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Reproductive behavior in elasmobranchs is challenging to assess due to 

the few tools available to study their mating systems. Molecular 

techniques offer an indirect approach to examine paternity in pups and 

identify putative fathers. This study presents the first record of the 

mating system of the California butterfly ray (Gymnura marmorata) 

using microsatellite molecular markers. A pregnant female, with a disk 

width (DW) of 95 cm and carrying 13 pups, was collected in Puerto 

Libertad, Sonora, Mexico. Paternity analyses detected that the litter was 

sired by at least two males, with a clear bias towards one dominant male 

who fathered most of the pups. Additionally, embryos sired by this 

dominant male had the largest DWs, suggesting a possible influence of 

sexual selection in this species. 
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El comportamiento reproductivo en elasmobranquios es difícil de 

evaluar debido a la limitada disponibilidad de herramientas para estudiar 

sus sistemas de apareamiento. Las herramientas moleculares ofrecen 

una aproximación indirecta para examinar la paternidad en las crías e 

identificar los posibles padres. Este estudio representa el primer registro 

del sistema de apareamiento en la raya mariposa (Gymnura marmorata) 

utilizando marcadores microsatélites. Se colectó una hembra preñada 

con un ancho de disco (AD) de 95 cm y con 13 embriones en Puerto 

Libertad, Sonora, México. Los análisis de paternidad detectaron que la 

camada fue fecundada por al menos dos machos diferentes con sesgo en 

la paternidad, donde un macho fecundó la mayoría de las crías. Además, 

los embriones del padre dominante presentaron un mayor tamaño de 

AD, sugiriendo una posible influencia de selección sexual en esta 

especie.

Palabras clave: poliandria, paternidad múltiple, sesgo de paternidad, Chondrictios.

The mating systems of elasmobranchs, particularly ray species, remain poorly 

understood (Chevolot, Ellis, Rijnsdorp, Stam, Olsen, 2007). To better assess 

the vulnerability of these species to fishing pressures and develop more 

effective management and conservation strategies, it is crucial to gather 

insights into their reproductive biology and life history (Rowe and Hutchings, 

2003). Among Chondrichthyes, mating systems are usually complex, with 

many studies documenting the prevalence of multiple paternity (MP), with 

females exhibiting polyandrous behavior  (Lamarca, Carvalho, Vilasboa, 

Netto-Ferreira, Vianna, 2020; Lyons, Kacev, Mull, 2021). 

Reproductive behavior studies in sharks are inherently challenging due to the 

difficulty of direct observation in their natural habitats. Nevertheless, for 

several decades, paternity analysis has proven to be an invaluable tool for 

investigating aspects of reproductive behavior in wild organisms (Di Fiore, 

2003; Uller and Olsson, 2008; Portnoy and Heist, 2012). In elasmobranch 

RESUMEN



147

CIMAR UAS

 Cimar 2025, 03   https://revistas.uas.edu.mx/index.php/CIMAR https://revistas.uas.edu.mx/

species, most insights into mating systems have been derived from paternity 

studies employing microsatellite markers (e.g. Chapman, Prodöhl, 

Gelsleichter, Manire, Shivji, 2004; Chevolot et al., 2007; Portnoy, Piercy, 

Musick, Burgess, Graves, 2007; Byrne and Avise 2012; Lyons, Chabot, Mull, 

Holder, Lowe, 2017). These markers are particularly useful for inferring 

paternal alleles when maternal genotypes are known. In Mexico, research on 

this topic remains limited; however, it represents a growing field of scientific 

interest (Tárula-Marín and Saavedra-Sotelo, 2021; Rendón-Herrera, Pérez-

Jiménez, Saavedra-Sotelo, 2022; Armanda-Tapia, Castillo-Geniz, Victoria-

Cota, Arce-Valdez, Enríquez-Paredes, 2023).

Fewer records of MP exist for rays compared to sharks (Chevolot et al., 2007; 

Lyons et al., 2017; Yano, Sato, Takahashi, 1999). Therefore, further studies on 

ray mating systems are needed to inform future fisheries management 

strategies. Current knowledge on ray mating systems is limited, making it 

challenging to assess the impacts of these systems on population recovery 

rates, particularly for species under fishing pressure. Reproductive behaviors, 

such as mate competition or choice, can have notable consequences for the 

recovery of commercially exploited marine species (Rowe and Hutchings, 

2003). Understanding these dynamics is essential for improving conservation 

efforts.

The California butterfly ray, Gymnura marmorata (Cooper 1864), ranges from 

southern California to Mexico, including the Gulf of California (Yokota, 

White, De Carvalho, 2016). This species is aplacental viviparous, with 

matrotrophy and histotrophy, and uterine villi secrete lipid-rich histotroph to 

nourish embryos (Mossman, 1987; Wourms and Bodine, 1983). Such 

supplemental nutrition involves a high energetic investment from females, 

which is present before and after egg fertilization (Lyons et al., 2017). The 

California butterfly ray has a gestation period of 9 to 12 months, with fecundity 

ranging from 2 to 16 pups per litter, as well as an annual reproductive cycle 

(Burgos-Vázquez, 2013; Dávila-Ortiz, 2002; Yokota et al., 2016). These 

reproductive traits suggest that mate selection is crucial, as the energetic 

investment of females to produce high-quality offspring with greater chances 

of survival is likely notable (Lyons et al., 2021). The aim of this study was to 

identify the mating system of G. marmorata in the Gulf of California through 

paternity analyses.
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MATERIAL AND METHODS

A gravid female with a disk width (DW) of 95 cm and bearing 13 pups 

was collected from an artisanal fishery in Puerto Libertad, Sonora, 

within the Gulf of California (29°54´15” N; 112°40´59” W). The 

organisms were collected in April 2017 using bottom-set gillnets 

operated by the artisanal fishery near Puerto Libertad. The DWs of the 

mother and pups were recorded, and tissue samples were collected for 

each individual. Samples were preserved in salt saturated 20% 

dymethilsulfoxide (DMSO) solution. Genomic DNA was isolated via 

proteinase K digestion, followed by a salting-out protocol using lithium 

chloride (Aljanabi and Martinez, 1997). The concentration and quality of 

DNA were verified by Nanodrop Lite (Thermo Fisher Scientiic, 

Waltham, USA) and agarose gel (1.5%) electrophoresis. Two 

microsatellite loci (SER61 and SER263) previously developed for 

Aetobatus narinari –(Sellas, Bassos-Hull, Hueter, Feldheim, 2011), 

were amplified for all samples. The amplicons were marked 

fluorescently with the universal primer M13 (De Arruda, Gonçalves, 

Schneider, Silva, Morielle-Versute, 2010). 

The PCR profile consisted of two phases. The first phase consisted of 5 

min at 94 ºC followed by 20 cycles of 94 ºC/15 s; 52 ºC/30 s (SER61), 53 

ºC/30 s (SER263); and 72 ºC/30 s. To conclude the first phase, M13 

primer (0.5 µM) was added to each reaction. The second phase was 

comprised of 10 cycles at 94 ºC/15 s; 53 ºC/30 s; 72 ºC/30 s; and 72 ºC for 

15 min. Each 10 µl reaction contained 0.2 µM of each dNTP and 1X PCR 

buffer, 0.5 µM of each primer, ½ U Taq DNApol (NEB, Ipswich, MA), 

and 10 ng of template DNA. Allele separation was performed on the 

automatic sequencer ABI 3100 (Applied Biosystems Inc, CA), and 

genotypes were scored on GENEMARKER v. 2.7.0 (SoftGenetics®). 

To evaluate the effectiveness of loci in detecting multiple paternity, we 

conducted simulations of multiple paternity probabilities using the 

PrDM program (Neff and Pitcher, 2002). These simulations varied 

parameters such as the number of sires, litter size, and the reproductive 

skew, of putative fathers. Putative father genotypes were inferred using 

the programs GERUD v. 2.0 (Jones, 2005) and COLONY2 (Jones and 
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RESULTS

Wang, 2010; Wang, 2004, 2010). GERUD estimates paternal genotypes and 

calculates the minimum number of sires per litter. In contrast, COLONY uses a 

maximum likelihood algorithm to assign embryos in full- or half-sibling 

groups based on inferred parent-offspring relationships. Finally, due to the lack 

of normality of the data, differences in embryo size between sires were 

evaluated using the Mann-Whitney U test.

Out of the 13 pups found, 6 pups were located in the left uterus and 7 pups in the 

right uterus (Table 1). The DW mean of embryos showed no significant 

differences between uteri (p > 0.05, Mann–Whitney U test; left uterus average 

DW = 17.67 cm, right uterus average DW= 16.82 cm). However, significant 

differences in embryo size were observed between sires (p = 0.03). Embryos 

sired by dominant male, defined as the father of the majority of the pups, were 

larger (n = 5, DW range = 17.2–18.2) compared to those sired by the second 

male (n = 3, DW range = 16.3–16.8).

Table 1. Summary of data. F: Female, M: Male, DW: Disc Width, DL: Disc Length, 
U: Uterus (L: Left, R: Right), Loci: Two microsatellites (SER61 and SER63) with 
allele sizes.
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Due to DNA quality constraints, only eight offspring could be 

successfully genotyped. The genetic diversity was moderate to high in 

both loci (SER63 Ho: 0.875, He: 0.492; SER61 Ho: 0.500, He: 0.557). 

Prior to any analyses, we compared embryo genotypes with the mother 

genotype to identify at least one shared allele per locus (Table 1). Three 

paternal alleles were identified at the SER61 locus and two at the SER63 

locus. The probability of detecting multiple paternity (PrDM) using two 

microsatellite loci was low under different scenarios (Table 2). 

Table 2. Probability of detecting multiple paternity with PrDM using two 
microsatellite loci in Gymnura marmorata under different scenarios of multiple 
mating.

GERUD indicated a minimum number of two sires, while COLONY2 

suggested between one and six sires using under various mating 

scenarios, including monogamy, polyandry, polygyny, and promiscuity. 

These results were then used in COLONY2 to assign paternity and 

sibling relationships among pups based on their genotypes using a 

maximum likelihood framework (Figure 1).
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DISCUSSION

Figure 1. Kinship analyses among pups of the litter of the sampled Gymnura 
marmorata female. Axes show each pup.

Two males were identified as likely sires of the litter, establishing the 

first confirmed case of multiple paternity (MP) in G. marmorata. We 

prioritized the number of sires and genotypes estimated by GERUD, 

given that COLONY2 has been known to overestimate the number of 

putative sires due to over-split –(Sefc and Koblmüller, 2009). Over-split 

sibships occur if the probability of exclusion (0.0063–0.0901) is low 

despite the high probability of inclusion (0.490–1), which results in an 

overestimated number of sires.

Despite the limited number of loci used in this analysis, it was possible to 

detect the number of sires. The lower amplification and genotyping 

success in this study could be attributed to the use of primers developed 

for another species and the low quality of DNA in some samples. 
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Although only two microsatellite loci were analyzed, the genetic 

variability detected was sufficient to identify multiple sires (Ho: 0.875 

and 0.500). However, it is acknowledged that in the multiple paternity 

simulations, the probability of detecting multiple sires in a scenario 

involving 13 embryos and two males was low with the available dataset 

(Table 2). Ongoing research aims to apply high-coverage genetic 

analysis (SNPs) to a larger sample size, allowing us to further validate 

these preliminary findings.

As highlighted earlier, elasmobranchs invest substantial energy in 

producing offspring, which necessitates a mechanism to ensure high 

quality progeny with an enhanced chance of survival (Lyons et al., 

2021). This is often achieved through cryptic sexual selection 

mechanisms in both sexes, a potent selective force driving the evolution 

of diverse sexual traits (Birkhead, Hosken, Pitnick, 2009; Birkhead and 

Møller, 1998). Studies on cryptic sexual selection in elasmobranchs 

have focused mainly on females, as evaluating direct reproductive traits 

like embryo size, weight, and positioning provides insight into potential 

female-controlled aspects of selection (Chapman et al., 2013; Farrell, 

O'Sullivan, Sacchi, Mariani, 2014; Lyons et al., 2017; Rendón-Herrera, 

2023). Statistical differences in these traits are commonly attributed to 

cryptic female choice, an aspect of sexual selection (Lyons et al., 2017; 

Rendón-Herrera, 2023). Our findings suggest male skewed paternity, as 

the largest embryos were sire by the dominant male, indicating potential 

cryptic sexual selection in the female favoring this sire. Nevertheless, 

abortions can occur in rays upon capture; therefore, this result could be 

biased due to the loss of embryos (Adams, Fetterplace, Davis, 2018). 

On the other hand, polyandry can drive intersexual conflicts that result in 

antagonistic coevolution, where female sexual selection mechanisms 

are countered by opposing male mechanisms (Zeh and Zeh, 2003). 

Sperm competition, a male reproductive strategy, arises due to the wide 

variation in multiple mating rates among females (Parker, 1970). In 

some species of elasmobranchs, sperm competition serves as a selective 

force influencing sperm morphology (e.g., sperm flagellum length), 

which can prove advantageous during competitive fertilizations 

(Rowley et al., 2019). Although it was not possible to evaluate these 
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