PCR-RFLP detection of the fimH virulence gene in clinical isolates of Klebsiella pneumoniae
Keywords:
Klebsiella pneumoniae, fimH, Bacterial virulenceAbstract
In 2024, the World Health Organization (WHO) published its list of priority bacterial pathogens, in which Klebsiella pneumoniae was ranked first in the critical-priority category. This classification reflects the increasing detection of carbapenem-resistant strains associated with in-hospital mortality rates exceeding 30%, combined with the presence of multiple virulence genes encoded on both the chromosome and plasmids. In this context, our research group initiated the study of several genes related to virulence and antimicrobial resistance. The aim of the present study was to detect the gene encoding the FimH adhesin, a component of type 1 fimbriae implicated in biofilm formation, in clinical strains of K. pneumoniae. Ten clinical strains (Kp1–Kp10) and the ATCC 13883 reference strain (included as a positive control) were analyzed by polymerase chain reaction (PCR), with confirmation by BamHI restriction digestion (RFLP analysis). The results showed the presence of the fimH gene in 80% of the clinical strains tested (8/10), and its absence in the remaining two strains (Kp1 and Kp7). In conclusion, a high frequency of the fimH gene was identified among the evaluated clinical strains, providing a molecular basis for the comprehensive characterization of virulence factors in this bacterium of critical global importance.
Downloads
References
Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. In Nucleic Acids Research (Vol. 25, Issue 22). Oxford University Press. http://doi: 10.1093/nar/25.22.4692
Asokan, S., Jacob, T., Jacob, J., AlSosowaa, A. A., Cherian, T., Peijnenburg, W. J. G. M., & Vijayan, S. (2025). Klebsiella pneumoniae: A growing threat in the era of antimicrobial resistance. In Microbe (Netherlands) (Vol. 7). Elsevier B.V. https://doi.org/10.1016/j.microb.2025.100333
Bengoechea, J. A., & Sa Pessoa, J. (2019). Klebsiella pneumoniae infection biology: Living to counteract host defences. In FEMS Microbiology Reviews (Vol. 43, Issue 2, pp. 123–144). Oxford University Press. https://doi.org/10.1093/femsre/fuy043
Calderon-Gonzalez, R., Lee, A., Lopez-Campos, G., Hancock, S. J., Sa-Pessoa, J., Dumigan, A., McMullan, R., Campbell, E. L., & Bengoechea, J. A. (2023). Modelling the Gastrointestinal Carriage of Klebsiella pneumoniae Infections. MBio, 14(1). https://doi.org/10.1128/mbio.03121-22
Chen, T., Dong, G., Zhang, S., Zhang, X., Zhao, Y., Cao, J., Zhou, T., & Wu, Q. (2020). Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01727-5
Chen, J., Zhang, H., & Liao, X. (2023). Hypervirulent Klebsiella pneumoniae. In Infection and Drug Resistance (Vol. 16, pp. 5243–5249). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S418523
Gerlach, G.-F., Clegg, S., & Allen, B. L. (1989). Identification and Characterization of the Genes Encoding the Type 3 and Type 1 Fimbrial Adhesins of Klebsiella pneumoniae. In JOURNAL OF BACTERIOLOGY (Vol. 171, Issue 3). http://doi:10.1128/jb.171.3.1262-1270.1989
Gołębiewska, J. E., Krawczyk, B., Wysocka, M., Ewiak, A., Komarnicka, J., Bronk, M., Rutkowski, B., & Dębska-Ślizień, A. (2019). Host and pathogen factors in Klebsiella pneumoniae upper urinary tract infections in renal transplant patients. Journal of Medical Microbiology, 68(3), 382–394. https://doi.org/10.1099/jmm.0.000942
Hernández-Sánchez, N., & López-Moreno, H. S. (2024). Estandarización de la técnica de PCR-RFLP del gen de virulencia fimH en aislados clínicos de Klebsiella pneumoniae [Tesis Licenciatura en Biotecnología Genómica]. Facultad de Ciencias Químico Biológicas, UAS.
Huang, X., Yao, X., Hou, Y., Zhang, D., Xie, R., Shi, C., Shang, Y., Bi, H., Song, W., Hua, L., Li, C., Chen, H., Wu, B., & Peng, Z. (2025). Global trends of antimicrobial resistance and virulence of Klebsiella pneumoniae from different host sources. Communications Medicine, 5(1). https://doi.org/10.1038/s43856-025-01112-1
Li, L., Gao, X., Li, M., Liu, Y., Ma, J., Wang, X., Yu, Z., Cheng, W., Zhang, W., Sun, H., Song, X., & Wang, Z. (2024). Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. In Frontiers in Cellular and Infection Microbiology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fcimb.2024.1324895
Lopatto, E. D. B., Pinkner, J. S., Sanick, D. A., Potter, R. F., Liu, L. X., Villicaña, J. B., Tamadonfar, K. O., Ye, Y., Zimmerman, M. I., Gualberto, N. C., Dodson, K. W., Janetka, J. W., Hunstad, D. A., & Hultgren, S. J. (2024a). Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 121(39). https://doi.org/10.1073/pnas.2409655121
Lopatto, E. D. B., Santiago-Borges, J. M., Sanick, D. A., Malladi, S. K., Azimzadeh, P. N., Timm, M. W., Fox, I. F., Schmitz, A. J., Turner, J. S., Ahmed, S. S., Ortinau, L., Gualberto, N. C., Pinkner, J. S., Dodson, K. W., Ellebedy, A. H., Kau, A. L., & Hultgren, S. J. (2024b). Monoclonal antibodies targeting the FimH adhesin protect against uropathogenic E. coli UTI. https://doi.org/10.1101/2024.12.10.627638
Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. In Frontiers in Cellular and Infection Microbiology (Vol. 8, Issue JAN). Frontiers Media S.A. https://doi.org/10.3389/fcimb.2018.00004
Pourmohammad-Hosseini, G., Ghandehari, F., & Hoveida, L. (2023). The abundance of capsule (wabG) and fimbria (fimH) coding genes in multidrug-resistant (MDR) Klebsiella pneumoniae strains isolated from patients admitted to Isfahan hospitals. Microbiology, Metabolites and Biotechnology, 6, 27–34. https://doi.org/10.22104/MMB.2023.6333.1111
Sarshar, M., Behzadi, P., Ambrosi, C., Zagaglia, C., Palamara, A. T., & Scribano, D. (2020). FimH and anti-adhesive therapeutics: A disarming strategy against uropathogens. In Antibiotics (Vol. 9, Issue 7, pp. 1–16). MDPI AG. https://doi.org/10.3390/antibiotics9070397
Schembri, M. A., Blom, J., Krogfelt, K. A., & Klemm, P. (2005). Capsule and fimbria interaction in Klebsiella pneumoniae. Infection and Immunity, 73(8), 4626–4633. https://doi.org/10.1128/IAI.73.8.4626-4633.2005
Schembri, M. A., Hasman, H., & Klemm, P. (2000). Expression and purification of the mannose recognition domain of the FimH adhesin. FEMS Microbiology Letters, 188(2), 147–151. https://doi.org/10.1111/j.1574-6968.2000.tb09186.x
Stahlhut, S. G., Chattopadhyay, S., Struve, C., Weissman, S. J., Aprikian, P., Libby, S. J., Fang, F. C., Krogfelt, K. A., & Sokurenko, E. V. (2009). Population variability of the FimH type 1 fimbrial adhesin in klebsiella pneumoniae. Journal of Bacteriology, 191(6), 1941–1950. https://doi.org/10.1128/JB.00601-08
Swedan, S. F., & Aldakhily, D. B. (2024). Antimicrobial resistance, biofilm formation, and molecular detection of efflux pump and biofilm genes among Klebsiella pneumoniae clinical isolates from Northern Jordan. Heliyon, 10(14). https://doi.org/10.1016/j.heliyon.2024.e34370
Velázquez-Escobar, F. M., B.-L. E., V.-C. U., L.-M. H. S. (2025). In silico design of a DNA vaccine against Toxoplasma gondii based on ROP35 antigen epitopes specific for murine B and CD4 + T lymphocytes. In Revista de Ciencias QuímicoQuímico BiológicasBiológicas.
Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of klebsiella pneumoniae. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 17, pp. 1–17). MDPI AG. https://doi.org/10.3390/ijerph17176278
World Health Organization. (2024). WHO Bacterial Priority Pathogens List, 2024. https://creativecommons.org/licenses/by-nc-sa/3.0/igo
Yu, W. L., Ko, W. C., Cheng, K. C., Lee, H. C., Ke, D. S., Lee, C. C., Fung, C. P., & Chuang, Y. C. (2006). Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clinical Infectious Diseases, 42(10), 1351–1358. https://doi.org/10.1086/503420
Zhu, J., Wang, T., Chen, L., & Du, H. (2021). Virulence Factors in Hypervirulent Klebsiella pneumoniae. In Frontiers in Microbiology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.642484
Downloads
Published
Data Availability Statement
Issue
Section
Categories
License
Copyright (c) 2025 QUIBIOUAS, Journal of Biological Chemical Sciences

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
