In vitro effectiveness of remineralizing agents: Literature review

Authors

Keywords:

Remineralizing caries agents, Dental enamel remineralization, in vitro

Abstract

Objective: To conduct a review of the literature selecting current studies that evaluated the effect of distinct agents on enamel remineralization in vitro. Method of data collection: The literature review was carried out using the data bases Scielo, Science direct, Springer link and LILACS, publications from the years 2016 to 2023, whose studies were carried out In vitro. Development: Dental caries causes destruction of the hard surfaces of teeth by carbohydrate fermentation that produces the formation of acids by bacteria. This disease can cause pain, infection and in advanced cases it can affect pulp tissue. For this reason, preventive treatments are very important, following this objective, we can find a wide range of chemical resources that have been used with different composition and presentation, so there are several alternatives of dental materials and techniques to prevent and arrest this process. Conclusions: Among the materials studied, Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), calcium sodium phosphosilicate (CSP), sodium fluoride (NaF), arginine (Arg) and silver diamine fluoride (SDF) stood out; in all of them, favorable effects were found for the dental remineralization process.

Downloads

Download data is not yet available.

References

World Health Organization. Sugars and dental caries . WHO Tech Inf NOTE . 2017 Oct;

Kazeminia M, Abdi A, Shohaimi S, Jalali R, Vaisi-Raygani A, Salari N, et al. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med [Internet]. 2020 Dec 6;16(1):22. Available from: https://head-face-med.biomedcentral.com/articles/10.1186/s13005-020-00237-z

Gibbons RJ, Houte J V. Dental Caries. Annu Rev Med [Internet]. 1975 Feb;26(1):121–36. Available from: https://www.annualreviews.org/doi/10.1146/annurev.me.26.020175.001005

Henderson D. GREENE VARDIMAN BLACK (1836–1915), THE GRAND OLD MAN OF DENTISTRY. Med Hist [Internet]. 1961 Apr 16;5(2):132–43. Available from: https://www.cambridge.org/core/product/identifier/S0025727300026090/type/journal_article

Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MWB, Fontana M, et al. Nonrestorative Treatments for Caries: Systematic Review and Network Meta-analysis. J Dent Res. 2019 Jan 5;98(1).

Early Childhood Caries: IAPD Bangkok Declaration. Int J Paediatr Dent [Internet]. 2019 May 17;29(3):384–6. Available from: https://onlinelibrary.wiley.com/doi/10.1111/ipd.12490

Mount GJ, Ngo H. Minimal intervention: a new concept for operative dentistry. Quintessence Int [Internet]. 2000 Sep;31(8):527–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11203973

Arifa MK, Ephraim R, Rajamani T. Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature. Int J Clin Pediatr Dent. 2019;

González-Cabezas C, Fernández CE. Recent Advances in Remineralization Therapies for Caries Lesions. Adv Dent Res [Internet]. 2018 Feb 22;29(1):55–9. Available from: http://journals.sagepub.com/doi/10.1177/0022034517740124

Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New Approaches to Enhanced Remineralization of Tooth Enamel. J Dent Res [Internet]. 2010 Nov 25;89(11):1187–97. Available from: http://journals.sagepub.com/doi/10.1177/0022034510376046

Preethi P N. Remineralizing Agent -Then and Now -An Update. Dentistry. 2014;04(09).

Mooney B. Operatoria dental. Integración clínica. 4° edición. Alvear M, editor. Buenos Aires: Editorial médica panamericana ; 2006.

Abou Neel E, Aljabo A, Strange A, Ibrahim S, Coathup M, Young A, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomedicine [Internet]. 2016 Sep;Volume 11:4743–63. Available from: https://www.dovepress.com/demineralizationndashremineralization-dynamics-in-teeth-and-bone-peer-reviewed-article-IJN

Laske M, Opdam NJM, Bronkhorst EM, Braspenning JCC, van der Sanden WJM, Huysmans MCDNJM, et al. Minimally Invasive Intervention for Primary Caries Lesions: Are Dentists Implementing This Concept? Caries Res. 2019;53(2).

Ramos-Gomez F. Early Childhood Caries: Policy and Prevention. J South Asian Assoc Pediatr Dent [Internet]. 2020 Jun 1;3(1):3–6. Available from: https://www.jsaapd.com/doi/10.5005/jp-journals-10077-3040

Byeon SM, Lee MH, Bae TS. The effect of different fluoride application methods on the remineralization of initial carious lesions. Restor Dent Endod [Internet]. 2016;41(2):121. Available from: https://rde.ac/DOIx.php?id=10.5395/rde.2016.41.2.121

Ramos-Gomez F, Crystal YO, Ng MW, Tinanoff N, Featherstone JD. Caries risk assessment, prevention, and management in pediatric dental care. Gen Dent [Internet]. 2010;58(6):505–17; quiz 518–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21062720

Ma X, Lin X, Zhong T, Xie F. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and meta-analysis. BMC Oral Health. 2019 Dec 30;19(1).

Thomas CS, Sharma DS, Sheet D, Mukhopadhyay A, Sharma S. Cross-sectional visual comparison of remineralization efficacy of various agents on early smooth surface caries of primary teeth with swept source optical coherence tomography. J Oral Biol Craniofacial Res [Internet]. 2021 Oct;11(4):628–37. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212426821000944

Walsh L. Contemporary technologies for remineralization therapies: A review. Int Dent S. 11(6):6–15.

Lynch RJM, Smith SR. Remineralization Agents – New and Effective or Just Marketing Hype? Adv Dent Res [Internet]. 2012 Sep 16;24(2):63–7. Available from: http://journals.sagepub.com/doi/10.1177/0022034512454295

Liu Y, Ren Z, Hwang G, Koo H. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment. Adv Dent Res. 2018 Feb 22;29(1).

Akari S, Guenka R, Ohyama H. Dental Remineralization therapeies for early caries. Mater Sci Res. 2020;35(4):96–105.

Bandekar S, Patil S, Dudulwar D, Moogi P, Ghosh S, Kshirsagar S. Remineralization potential of fluoride, amorphous calcium phosphate-casein phosphopeptide, and combination of hydroxylapatite and fluoride on enamel lesions: An in vitro comparative evaluation. J Conserv Dent [Internet]. 2019;22(3):305. Available from: http://www.jcd.org.in/text.asp?2019/22/3/305/262010

Veeramani R, Shanbhog R, Priyanka T, Bhojraj N. Remineralizing effect of calcium-sucrose-phosphate with and without fluoride on primary and permanent enamel: Microhardness and quantitative-light-induced-fluorescenceTM based in vitro study. Pediatr Dent J [Internet]. 2021 Apr;31(1):51–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0917239420300732

SIQUEIRA VL, BARRETO GS, SILVA EBV, SILVA TV da, NASCIMENTO DG do, VERONEZI A, et al. Effect of xylitol varnishes on enamel remineralization of immature teeth: in vitro and in situ studies. Braz Oral Res [Internet]. 2021;35. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-83242021000100306&tlng=en

Celik ZC, Yavlal GO, Yanıkoglu F, Kargul B, Tagtekin D, Stookey GK, et al. Do Ginger Extract, Natural Honey and Bitter Chocolate Remineralize Enamel Surface as Fluoride Toothpastes? An In-Vitro Study. Niger J Clin Pract [Internet]. 2021 Sep;24(9):1283–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34531338

Soares R. Assessment of Enamel Remineralisation After Treatment with Four Different Remineralising Agents: A Scanning Electron Microscopy (SEM) Study. J Clin DIAGNOSTIC Res [Internet]. 2017; Available from: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2017&volume=11&issue=4&page=ZC136&issn=0973-709x&id=9758

Silvertown JD, Wong BPY, Sivagurunathan KS, Abrams SH, Kirkham J, Amaechi BT. Remineralization of natural early caries lesions in vitro by P 11 ‐4 monitored with photothermal radiometry and luminescence. J Investig Clin Dent [Internet]. 2017 Nov 4;8(4). Available from: https://onlinelibrary.wiley.com/doi/10.1111/jicd.12257

Kamal D, Hassanein H, Elkassas D, Hamza H. Complementary remineralizing effect of self-assembling peptide (P11-4) with CPP-ACPF or fluoride: An in vitro study. J Clin Exp Dent [Internet]. 2020;e161–8. Available from: http://www.medicinaoral.com/medoralfree01/aop/56295.pdf

Bhat SScE of TRA on ACLUDiagno, Hegde SK, Bhat VS, Arjun DS, Rao HTA, Ramdas SS. Comparative Evaluation of Two Remineralizing Agents on Artificial Carious Lesion Using DIAGNOdent. Int J Clin Pediatr Dent [Internet]. 2021 Jul 30;14(2):192–5. Available from: https://www.ijcpd.com/doi/10.5005/jp-journals-10005-1937

Nourolahian H, Parisay I, Mir F. The effect of Remin Pro on the microhardness of initial enamel lesions in primary teeth: An in vitro study. Dent Res J (Isfahan) [Internet]. 2021;18:16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34104363

Thierens LAM, Moerman S, Elst C van, Vercruysse C, Maes P, Temmerman L, et al. The in vitro remineralizing effect of CPP-ACP and CPP-ACPF after 6 and 12 weeks on initial caries lesion. J Appl Oral Sci. 2019;27.

X Cheng, P Xu, X Zhou, M Deng, L Cheng, M Li, Y Li XX. Arginine promotes fluoride uptake into artificial carious lesions in vitro. Aust Dent J. 2015;60(1):104–11.

Bijle, M. N. A., Tung, L. P., Wong, J., Ekambaram, M., Lo, E. C., & Yiu CKY. Enhancing the Remineralization Potential of Child Formula Dentifrices: An In Vitro Study. J Clin Pediatr Dent. 2019;43(5):337–44.

Bijle MN, Ekambaram M, Lo EC, Yiu CKY. The enamel remineralization potential of fluoride varnishes containing arginine. J Dent [Internet]. 2020 Aug;99:103411. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300571220301573

Thimmaiah C, Shetty P, Shetty SB, Natarajan S, Thomas N-A. Comparative analysis of the remineralization potential of CPP?ACP with Fluoride, Tri-Calcium Phosphate and Nano Hydroxyapatite using SEM/EDX An in vitro study. J Clin Exp Dent. 2019;11(12):1120–1116.

Sorkhdini P, Crystal YO, Tang Q, Lippert F. The effect of silver diamine fluoride in preventing in vitro primary coronal caries under pH-cycling conditions. Arch Oral Biol [Internet]. 2021 Jan;121:104950. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003996920303289

Punyanirun K, Yospiboonwong T, Kunapinun T, Thanyasrisung P, Trairatvorakul C. Silver diamine fluoride remineralized artificial incipient caries in permanent teeth after bacterial pH-cycling in-vitro. J Dent [Internet]. 2018 Feb;69:55–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300571217302191

Scarpelli BB, Punhagui MF, Hoeppner MG, Almeida RSC de, Juliani FA, Guiraldo RD, et al. In Vitro Evaluation of the Remineralizing Potential and Antimicrobial Activity of a Cariostatic Agent with Silver Nanoparticles. Braz Dent J [Internet]. 2017 Dec;28(6):738–43. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-64402017000600738&lng=en&tlng=en

Yu OY, Zhao IS, Mei ML, Lo ECM, Chu CH. Caries-arresting effects of silver diamine fluoride and sodium fluoride on dentine caries lesions. J Dent [Internet]. 2018 Nov;78:65–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300571218302951

Basir L, Kalhori S, Zare Javid A, Khaneh Masjedi M. Anticaries Activity of Curcumin on Decay Process in Human Tooth Enamel Samples (In Vitro Study). J Natl Med Assoc [Internet]. 2018 Oct;110(5):486–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0027968417301748

Neuhaus KW, Milleman JL, Milleman KR, Mongiello KA, Simonton TC, Clark CE, et al. Effectiveness of a calcium sodium phosphosilicate containing prophylaxis paste in reducing dentine hypersensitivity immediately and 4 weeks after a single application: a double‐blind randomized controlled trial. J Clin Periodontol [Internet]. 2013 Apr 17;40(4):349–57. Available from: https://onlinelibrary.wiley.com/doi/10.1111/jcpe.12057

Manoharan V, Kumar Rk, Sivanraj A, Arumugam S. Comparative evaluation of remineralization potential of casein phosphopeptide- amorphous calcium fluoride phosphate and novamin on artificially demineralized human enamel: An In vitro study. Contemp Clin Dent [Internet]. 2018;9(5):58. Available from: http://www.contempclindent.org/text.asp?2018/9/5/58/233899

Ali S, Farooq I, Al-Thobity AM, Al-Khalifa KS, Alhooshani K, Sauro S. An in-vitro evaluation of fluoride content and enamel remineralization potential of two toothpastes containing different bioactive glasses. Biomed Mater Eng [Internet]. 2020 Jan 20;30(5–6):487–96. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/BME-191069

Haghgoo R, Ahmadvand M, Moshaverinia S. Remineralizing Effect of Topical NovaMin and Nanohydroxyapatite on Caries-like Lesions in Primary Teeth. J Contemp Dent Pract [Internet]. 2016 Aug;17(8):645–9. Available from: https://www.thejcdp.com/doi/10.5005/jp-journals-10024-1905

Tubert-Jeannin S, Auclair C, Amsallem E, Tramini P, Gerbaud L, Ruffieux C, et al. Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children. Cochrane Database Syst Rev. 2011 Dec 7;

Dhar V, Bhatnagar M. Physiology and toxicity of fluoride. Indian J Dent Res. 2009;20(3).

Rosenblatt A, Stamford TCM, Niederman R. Silver diamine fluoride: A caries “silver-fluoride bullet.” J Dent Res. 2009;88(2):116–25.

Philip N, Walsh L. The potential ecological effects of casein phosphopeptide-amorphous calcium phosphate in dental caries prevention. Aust Dent J. 2019 Mar;64(1).

Raphael S, Blinkhorn A. Is there a place for Tooth Mousse® in the prevention and treatment of early dental caries? A systematic review. BMC Oral Health [Internet]. 2015 Dec 25;15(1):113. Available from: http://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-015-0095-6

Greenspan D. NovaMin® and Tooth Sensitivity—An Overview. J Clin Dent. 2010;21:61–65.

Wefel JS. NovaMin ® : Likely Clinical Success. Adv Dent Res. 2009 Aug 31;21(1).

Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma) [Internet]. 2014 Jul;5(3):108–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25506416

Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, et al. Health benefits of xylitol. Appl Microbiol Biotechnol [Internet]. 2020 Sep 7;104(17):7225–37. Available from: https://link.springer.com/10.1007/s00253-020-10708-7

Sano H, Nakashima S, Songpaisan Y, Phantumvanit P. Effect of a xylitol and fluoride containing toothpaste on the remineralization of human enamel in vitro. J Oral Sci [Internet]. 2007;49(1):67–73. Available from: http://www.jstage.jst.go.jp/article/josnusd/49/1/49_1_67/_article

Cobos , Cinthya, Valenzuela , Emilia, & Araiza M. Influencia de un enjuague a base de fluoruro y xilitol en la remineralización in vitro del esmalte en dientes temporales. Rev Odont Mex. 2013;17:204-209.

Jiménez-Gayosso DDS SI, Lara-Carrillo DDS, MSc, PhD E, Scougall-Vilchis DDS, MSc, PhD RJ, Morales-Luckie BS Chem, PhD RA, Medina Solís DDS, MSc CE, Velázquez-Enríquez DDS, MSc, PhD U, et al. Remineralizing Effect of Xilitol, Juniperus Communis and Camellia Sinensis Added to a Toothpaste: An In Vitro Study. Odovtos - Int J Dent Sci [Internet]. 2018 Sep 18;97–105. Available from: https://revistas.ucr.ac.cr/index.php/Odontos/article/view/34573

Bijle MNA, Ekambaram M, Lo EC, Yiu CKY. The combined enamel remineralization potential of arginine and fluoride toothpaste. J Dent [Internet]. 2018 Sep;76:75–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0300571218301672

Khijmatgar S, Reddy U, John S, Badavannavar AN, D Souza T. Is there evidence for Novamin application in remineralization?: A Systematic review. J Oral Biol Craniofacial Res [Internet]. 2020 Apr;10(2):87–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212426820300014

Mandal D, Nasrolahi Shirazi A, Parang K. Self-assembly of peptides to nanostructures. Org Biomol Chem [Internet]. 2014;12(22):3544–61. Available from: http://xlink.rsc.org/?DOI=C4OB00447G

Hosseinkhani H, Hong P-D, Yu D-S. Self-Assembled Proteins and Peptides for Regenerative Medicine. Chem Rev [Internet]. 2013 Jul 10;113(7):4837–61. Available from: https://pubs.acs.org/doi/10.1021/cr300131h

Brunton PA, Davies RPW, Burke JL, Smith A, Aggeli A, Brookes SJ, et al. Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. Br Dent J [Internet]. 2013 Aug 23;215(4):E6–E6. Available from: https://www.nature.com/articles/sj.bdj.2013.741

Mohamed RN, Basha S, Al-Thomali Y, Saleh Alshamrani A, Salem Alzahrani F, Tawfik Enan E. Self-assembling peptide P 11 -4 in remineralization of enamel caries – a systematic review of in-vitro studies. Acta Odontol Scand [Internet]. 2021 Feb 17;79(2):139–46. Available from: https://www.tandfonline.com/doi/full/10.1080/00016357.2020.1825799

Downloads

Published

2025-04-30

Issue

Section

Revisiones Bibliográficas

Categories

How to Cite

Similar Articles

You may also start an advanced similarity search for this article.