Simplified methodology for the seismic assessment of school buildings type UC

Authors

  • Jorge Ruiz García Author

Keywords:

School buildings, Short column, Shear failure, Maximum interstory drift

Abstract

This paper presents a simplified methodology for the seismic assessment of urban school buildings whose structural system is based on reinforced concrete frames, clasified as type UC.
The methodology is founded in the response, in terms of the maximum lateral displacement,
of an equivalent single-degree-of-freedom system whose behavior is described by an idealized
trilinear envelope. The trilinear envelope includes a post-peak negative slope that represents
the possible collapse mechanism associated to the shear failure of reinforced concrete captive
columns at the ground floor. The introduced methodology allows an estimation of the interstorey
drift at the first storey, IDR1, and the interstorey drift at the captive columns, IDRc, which can
be used to estimate their damage state through fragility functions. 

Downloads

Download data is not yet available.

References

Alcocer S.M., Muria-Vila D., Fernández-Sola L.R., Arce J.C., (2020a), “Observed damage in public school buildings during the 2017 Mexico earthquakes”, Earthquake Spectra, 36(2_suppl):110–129.

Alcocer S.M., Arce J.C., Muria-Vila D., Fernández-Sola L.R., Guardia D.A. (2020b), “Assessment of the seismic safety of school buildings in Mexico: A first look”, Earthquake Spectra, 36(2_suppl):130–53.

ASCE/SEI 41-17 (2017), Seismic evaluation and retrofit of existing buildings. ASCE/SEI standard 41-17; American Society of Civil Engineering (ASCE).

ASCE/SEI 41-23 (2023) Seismic evaluation and retrofit of existing buildings. ASCE/SEI standard 41-23; American Society of Civil Engineers (ASCE).

Aslani H., y Miranda E. (2005), “Probabilistic earthquake loss estimation and loss disaggregation in buildings”, Report No. 157, The John A. Blume Earthquake Engineering Center, Stanford, CA.

Fajfar P., y Gaspersic P. (1996), “The N2 method for the seismic damage analysis of RC buildings”, Earthquake Eng Struct Dyn, 25:23–67.

Freeman, S., Nicoletti, J. P., Matsumura, G. (1984), “Seismic design guidelines for essential buildings”, Memorias del VIII World Conference on Earthquake Engineering, EERI (Vol. 1, pp. 715-722).

García-Carrera J.S., Mena-Hernández U., Bermúdez-Alarcón F.J. (2018), “El terremoto 19S en Morelos: la experiencia operativa del INEEL en la evaluación del riesgo estructural”, Salud Publica Mex; 60(supl 1): S65-S82.

Guevara T. y García L.E. (2005), “The captive- and short-column effects”, Earthquake Spectra, 21(1): 141–160.

Ibarra L.F., Medina R.A., Krawinkler H. (2005), “Hysteretic models that incorporate strength and stiffness deterioration”, Earthquake Engineering & Structural Dynamics, 34: 1489–1511.

INIFED (2017), “Informe de Actividades 2015- 2017”, Instituto Nacional de la Infraestructura Física Educativa (INIFED)

[http://www.inifed.gob.mx/escuelasalcien/pdf/Informe%20de%20actividades%20INIFED2017.pdf]

Jaimes M.A. y Niño M. (2017), “Cost-benefit analysis to assess seismic mitigation options in Mexican public school buildings”, Bull Earthquake Eng 15: 3919–3942.

López Barrón J.A. (2021), "Evaluación de la capacidad remanente y de demolición de edificios de concreto reforzado con planta baja débil”, Tesis de Maestría, Universidad Michoacana de San Nicolás de Hidalgo, 124pp.

Lynn A.C., Moehle J.P. y Mahin S.A. (1996), “Seismic evaluation of existing reinforced concrete building columns”, Earthquake Spectra, 12(4): 715-739.

McKenna, F., Fenves, G. L., y Scott, M. H. (2006). OpenSees: Open system for earthquake engineering simulation. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA., http://opensees.berkeley.edu

Noh N.M., Liberatore L., Mollaioli F., y Tesfamariam S. (2017), “Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees”, Engineering Structures, 150: 599-621.

Olvera Alejo R.N. (2020), “Evaluación de la resiliencia sísmica de edificios escolares en el Estado de Michoacán”, Tesis de Licenciatura, Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolas de Hidalgo, 91pp.

Ruiz-García J., Olvera R.N., López J.A. y Frías A.D. (2020), “Evaluación de la resiliencia sísmica de edificios escolares”, Memorias del XXII Congreso Nacional de Ingeniería Estructural, Ags., artículo

Ruiz-García J., Olvera R.N., y Frías A.D. (2021), “Seismic assessment of school buildings with short captive RC columns under subduction seismic sequences”, Structures, 34: 2432-2444.

Ruiz-García, J., y Ramos-Cruz, J.M. (2024), “Drift-based fragility assessment of nonductile reinforced concrete columns failing in shear under cyclic loading”, Engineering Structures, 302: 117378.

PNR (2019), “Programa Nacional de Reconstrucción. Informe del primer año”, [http://www.reconstruyendoesperanza.gob.mx/difusion/wp-content/uploads/2020/11/PNR_Informe%20anual_2019_20201118.pdf]

Servicio Sismológico Nacional (SSN), “Reporte Especial: Sismo del día 19 de septiembre de 2017, Puebla-Morelos (M 7.1)”, Universidad Nacional Autónoma de México (UNAM), http://www.ssn.unam.mx/sismicidad/reportes-especiales/2017/SSNMX_rep_esp_20170919_Puebla-Morelos_M71.pdf

Tena-Colunga A., y Álvarez J.L. (1995), “Seismic Retrofit of Low-Rise School Building Using Post- Tensioned Bracing Systems”, 7th Canadian Conference on Earthquake Engineering, Montreal, pp. 859-869.

World Bank (2019), “Fragility and vulnerability assessment guide”, Global Program for Safer Schools, The Global Library of School Infrastructure; disponible en: https://gpss.worldbank.org/sites/gpss/files/2019-10/Fragility%20and%20Vulnerability%20Assessment%20Guide.pdf

Vizcaino I. (2022), https://www.facebook.com/indira.vizcaino.s (ultima consulta 23 de septiembre de 2022)

Published

2025-12-31

How to Cite

Ruiz García, J. (2025). Simplified methodology for the seismic assessment of school buildings type UC. Revista Ingeniería Y Tecnología UAS, 9, 24-37. https://revistas.uas.edu.mx/index.php/RITUAS/article/view/1448