Poliandria en Gymnura marmorata del Alto Golfo de California
Palabras clave:
poliandria, paternidad múltiple, sesgo de paternidad, CondrictiosResumen
El comportamiento reproductivo en elasmobranquios es difícil de evaluar debido a la limitada disponibilidad de herramientas para estudiar sus sistemas de apareamiento. Las herramientas moleculares ofrecen una aproximación indirecta para examinar la paternidad en las crías e identificar los posibles padres. Este estudio representa el primer registro del sistema de apareamiento en la raya mariposa (Gymnura marmorata) utilizando marcadores microsatélitates. Se colecto una hembra preñada con un ancho de disco (AD) de 95 cm y con 13 embriones en Puerto Libertad, Sonora, México. Los análisis de paternidad detectaron que la camada fue fecundada por al menos dos machos diferentes con sesgo en la paternidad, donde un macho fecundo la mayoría de las crías. Además, los embriones del padre dominante presentaron un mayor tamaño de AD sugiriendo una posible influencia de selección sexual en esta especie.
Descargas
Referencias
Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22), 4692–4693. doi: 10.1093/nar/25.22.4692
Birkhead, T. R., Hosken, D. J., & Pitnick, S. (2009). Sperm Biology: An Evolutionary Perspective. Academic Press.
Birkhead, T. R., & Møller, A. P. (1998). Sperm Competition and Sexual Selection. Academic Press.
Burgos-Vázquez, M. I. (2013). Biología reproductiva de la raya mariposa Gymnura marmorata (Cooper, 1864 ) en la costa occidental de Baja California Sur, México. [M.Sc. Thesis, Instituto Politécnico Nacional].
Chapman, D. D., Wintner, S. P., Abercrombie, D. L., Ashe, J., Bernard, A. M., Shivji, M. S., & Feldheim, K. A. (2013). The behavioural and genetic mating system of the sand tiger shark, Carcharias taurus, an intrauterine cannibal. Biology Letters, 9(3), 20130003. doi: 10.1098/rsbl.2013.0003
Chevolot, M., Ellis, J., Rijnsdorp, A. D., Stam, W. T., & Olsen, J. L. (2007). Multiple paternity analysis in the Thornback Ray Raja clavata L . Journal of Heredity, 98(7), 712–715. doi: 10.1093/jhered/esm077
Dávila-Ortiz, J. (2002). Biología reproductiva de la raya mariposa Gymnura marmorata (Cooper 1863), en Bahía Almejas, B. C.S., México. [Bachelor's Thesis, Universidad Autónoma de Baja California Sur].
De Arruda, M. P., Gonçalves, E. C., Schneider, M. P. C., Da Costa Da Silva, A. L., & Morielle-Versute, E. (2010). An alternative genotyping method using dye-labeled universal primer to reduce unspecific amplifications. Molecular Biology Reports, 37(4), 2031–2036. doi: 10.1007/s11033-009-9655-7
Farrell, E. D., Sullivan, N. O., Sacchi, C., & Mariani, S. (2014). Multiple paternity in the starry smooth-hound shark Mustelus asterias (Carcharhiniformes: Triakidae). Biological Journal of the Linnean Society, 111, 119–125. doi: 10.1111/bij.12179
Jones, A. G. (2005). GERUD 2.0: A computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Molecular Ecology Notes, 5(3), 708–711. doi: 10.1111/j.1471-8286.2005.01029.x
Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. doi: 10.1111/j.1755-0998.2009.02787.x
Lamarca, F., Carvalho, P. H., Vilasboa, A., Netto-Ferreira, A. L., & Vianna, M. (2020). Is multiple paternity in elasmobranchs a plesiomorphic characteristic? Environmental Biology of Fishes, 103(12), 1463–1470. doi: 10.1007/s10641-020-01034-y
Lyons, K., Chabot, C. L., Mull, C. G., Paterson Holder, C. N., & Lowe, C. G. (2017). Who’s My Daddy? Considerations for the influence of sexual selection on multiple paternity in elasmobranch mating systems. Ecology and Evolution, June. doi: 10.1002/ece3.3086
Lyons, K., Kacev, D., & Mull, C. G. (2021). An inconvenient tooth: Evaluating female choice in multiple paternity using an evolutionarily and ecologically important vertebrate clade. Molecular Ecology, 30(7), 1574–1593. doi: 10.1111/mec.15844
Mossman, H. W. (1987). Vertebrate fetal membranes: Comparative ontogeny and morphology, evolution, phylogenetic significance, basic functions, research opportunities. Rutgers University Press.
Neff, B. D., & Pitcher, T. E. (2002). Assessing the statistical power of genetic analyses to detect multiple mating in fishes. Journal of Fish Biology, 61, 739–750. doi: 10.1006/jfbi.2002.2101
Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews, 45(4), 525–567. doi: 10.1111/j.1469-185X.1970.tb01176.x
Rendón-Herrera, J. J. (2023). Sistema de apareamiento en Mustelus henlei: Influencia de los procesos crípticos post-copulatorios de las hembras en la paternidad múltiple [M.Sc. Thesis, Universidad Autónoma de Sinaloa].
Rowe, S., & Hutchings, J. A. (2003). Mating systems and the conservation of commercially exploited marine fish. Trends in Ecology and Evolution, 18(11), 567–572. doi: 10.1016/j.tree.2003.09.004
Rowley, A., Locatello, L., Kahrl, A., Rego, M., Boussard, A., Garza‐Gisholt, E., Kempster, R. M., Collin, S. P., Giacomello, E., Follesa, M. C., Porcu, C., Evans, J. P., Hazin, F., Garcia‐Gonzalez, F., Daly‐Engel, T., Mazzoldi, C., & Fitzpatrick, J. L. (2019). Sexual selection and the evolution of sperm morphology in sharks. Journal of Evolutionary Biology, 32(10), 1027–1035. doi: 10.1111/jeb.13501
Sefc, K. M., & Koblmüller, S. (2009). Assessing parent numbers from offspring genotypes: The importance of marker polymorphism. Journal of Heredity, 100(2), 197–205. doi: 10.1093/jhered/esn095
Sellas, A. B., Bassos-Hull, K., Hueter, R. E., & Feldheim, K. A. (2011). Isolation and characterization of polymorphic microsatellite markers from the spotted eagle ray (Aetobatus narinari). Conservation Genetics Resources, 3(4), 609–611. doi: 10.1007/s12686-011-9415-6
Wang, J. (2004). Sibship reconstruction from genetic data with typing errors. Genetics, 166(4), 1963–1979. doi: 10.1093/genetics/166.4.1963
Wang, J. (2010). Effects of genotyping errors on parentage exclusion analysis. Molecular Ecology, 19(22), 5061–5078. doi: 10.1111/j.1365-294X.2010.04865.x
Wourms, J. P., & Bodine, A. B. (1983). Biochemical analysis and cellular origin of uterine histotrophe during early gestation of the viviparous butterfly ray. American Zoologist, 23(4), 1018–1018.
Yano, K., Sato, F., & Takahashi, T. (1999). Observations of mating behavior of the manta ray, Manta birostris, at the Ogasawara Islands, Japan. Ichthyological Research, 46(3), 289–296. doi: 10.1007/BF02678515
Yokota, L., White, W. T., & De Carvalho, M. R. (2016). Butterfly rays, Family Gymnuridae. In P. R. Last, W. T. William, M. R. De Carvalho, B. Séret, M. F. W. Stehmann, & G. J. P. Naylor (Eds.), Rays of the World (pp. 1032–1052). CSIRO Publishing.
Zeh, J. A., & Zeh, D. W. (2003). Toward a New Sexual Selection Paradigm: Polyandry, Conflict and Incompatibility (Invited Article). Ethology, 109(12), 929–950. doi: 10.1046/j.1439-0310.2003.00945.x

Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Revista Ciencias del Mar, UAS

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.