Thread collection technique in aquaculture systems as an effective and non-invasive parasitological diagnosis for the study of monogenean parasites

Authors

  • Mayra I. Grano-Maldonado Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0000-0001-7519-379X
  • J. Ángel Gibrian López-Ceseña Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0009-0001-9064-5608
  • Jesús Andrés Piña-Rodríguez Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0009-0000-0342-9759
  • Jesús Arath Beltrán-Corrales Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0009-0000-7177-110X
  • Wilfredo Gámez-Acosta Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0009-0001-2647-1930
  • Simón Alejandro García-Russell Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen s/n, colonia centro, C.P. 82000, Mazatlán, Sinaloa, México. Author https://orcid.org/0009-0008-5719-6143

Keywords:

Cotton threads, helminths, fish, in vitro

Abstract

This paper presents a comprehensive review of the technique for collecting monogenean eggs using cotton threads over the last 20 years. This non-invasive method is crucial for studying parasites in fish of importance to aquaculture. Aquaculture is one of the most important productive sectors worldwide. However, the intensification of production systems and high demand have led to increased stocking densities, making fish more susceptible to parasitic diseases. The most prominent of these are those caused by parasites with a direct life cycle, such as monogeneans. These ectoparasitic helminths attach to the skin and gills, causing high mortality rates and substantial economic losses. To date, the life cycles of many monogenean parasites remain unknown, hindering effective prevention and control of their developmental stages. In this context, the cotton thread technique has been developed as a tool for collecting eggs to obtain larvae, avoiding the sacrifice of farmed fish for study. It consists of attaching 20 cm of cotton thread to the tank's aerator, removing the thread after 6 hours to observe the eggs under a stereomicroscope, and incubating the eggs in an aqueous medium to obtain larvae, primarily of monogenean species. In Sinaloa, monogenean infections have been reported in emerging farmed marine fish species, including snapper (Lutjanus guttatus), Pacific white snook (Centropomus viridis), and pufferfish (Sphoeroides annulatus). In these cases, this technique has been used in 15 studies by researchers from various regional institutions.

Downloads

Download data is not yet available.

References

Abba, A. M., Abdulkarim, B., Omenesa, R. L., Abdulhamid, Y., & Mudassir, I. (2018). Study on physico-chemical parameters and prevalence of fish parasites in Jibia Reservoir, Katsina State, Nigeria. UMYU Journal of Microbiology Research, 3(2), 1-6. https://www.ajol.info/index.php/ujmr/article/view/286561/269995

Adawy, R., Meged, R., & Sorour, S. (2016). Some studies on Monogenea infections in gills of marine water fishes in Egypt. Assiut Veterinary Medical Journal, 62(151), 1-11. https://doi.org/10.21608/avmj.2016.166636

Ageng’o, F. O., Waruiru, R. M., Wanja, D. W., Nyaga, P. N., Hamisi, M. M., Khasake, C. N., & Chadag, M. V. (2024). Relationship between water quality parameters and parasite infestation in farmed Oreochromis niloticus in selected rift Valley Counties, Kenya. Aquaculture Research, 2024(1), 6139798. https://doi.org/10.1155/2024/6139798

Angel, D., Jokumsen, A., & Lembo, G. (2019). Aquaculture production systems and environmental interactions. En G. Lembo & E. Mente (Eds.), Organic Aquaculture (pp. 147-190). Springer, Cham. https://doi.org/10.1007/978-3-030-05603-2_6

Bellay, S., De Oliveira, E. F., Almeida-Neto, M., & Takemoto, R. M. (2020). Ectoparasites are more vulnerable to host extinction than co-occurring endoparasites: evidence from metazoan parasites of freshwater and marine fishes. Hydrobiologia, 847(13), 2873-2882. https://doi.org/10.1007/s10750-020-04279-x

Bellay, S., De Oliveira, E. F., Almeida-Neto, M., Mello, M. A., Takemoto, R. M., & Luque, J. L. (2015). Ectoparasites and endoparasites of fish form networks with different structures. Parasitology, 142(7), 901-909. https://doi.org/10.1017/S0031182015000128

Blasco-Costa, I., & Poulin, R. (2017). Parasite life-cycle studies: a plea to resurrect an old parasitological tradition. Journal of Helminthology, 91(6), 647-656. https://doi.org/10.1017/S0022149X16000924

Bocanegra, G. T., Rojas, C. A., de Sousa, A. L., Guimaraes, L. C., & Morey, A. M. (2024). Sodium chloride and formalin to control monogenoids of Colossoma macropomum in the Peruvian Amazonia. Ciência Animal, 34(1), 88-a.

Buchmann, K. (2022). Control of parasitic diseases in aquaculture. Parasitology, 149(14), 1985-1997. https://doi.org/10.1017/S0031182022001093

Caña-Bozada, V. H., Huerta-Ocampo, J. Á., Bojórquez-Velázquez, E., Elizalde-Contreras, J. M., May, E. R., & Morales-Serna, F. N. (2024). Proteomic analysis of Neobenedenia sp. and Rhabdosynochus viridisi (Monogenea, Monopisthocotylea): Insights into potential vaccine targets and diagnostic markers for finfish aquaculture. Veterinary Parasitology, 329, 110196. https://doi.org/10.1016/j.vetpar.2024.110196

Canul-Cámara, M. G., Durruty-Lagunes, C. V., Solórzano-García, B., & Pérez-Ponce de León, G. (2025). Metazoan parasites of the red grouper, Epinephelus morio, in a pilot aquaculture system in Yucatán, Mexico. Latin American Journal of Aquatic Research, 53(5). https://doi.org/10.3856/vol53-issue5-fulltext-3483

Cebrián-Camisón, S., Martínez-de la Puente, J., Ruiz-López, M. J., & Figuerola, J. (2025). Do specialist and generalist parasites differ in their prevalence and intensity of infection? A test of the niche breadth and trade-off hypotheses. International Journal for Parasitology, 55(2), 129-136. https://doi.org/10.1016/j.ijpara.2024.11.009

Cheng, J., Zou, H., Li, M., Wang, J., Wang, G., & Li, W. (2023). Morphological and molecular identification of Dactylogyrus gobiocypris (Monogenea: Dactylogyridae) on gills of a Model Fish, Gobiocypris rarus (Cypriniformes: Gobionidae). Pathogens, 12(2), 206. https://doi.org/10.3390/pathogens12020206

Colón-Llavina, M. M., Mattiucci, S., Nascetti, G., Harvey, J. T., Williams, E. H., & Mignucci-Giannoni, A. A. (2019). Some metazoan parasites from marine mammals stranded in California. Pacific Science, 73(4), 461-473. https://doi.org/10.2984/73.4.3

Combes, C. (2020). The art of being a parasite. University of Chicago Press. https://doi.org/10.7208/9780226778723

CONAPESCA. (2024). Anuario estadístico de acuacultura y pesca 2024: Ficha estadística mojarra, 2012-2024. Comisión Nacional de Acuacultura y Pesca. https://nube.conapesca.gob.mx/sites/cona/dgppe/2024/ANUARIO_ESTADISTICO_DE_ACUACULTURA_Y_PESCA_2024.pdf

Dărăbuș, G., Ujvari, K. R., & Imre, M. (2024). Parasitism with protozoa and monogeneans in fish from the natural waters of Romania. Microorganisms, 12(8), 1519. https://doi.org/10.3390/microorganisms12081519

De Araújo, P. A., Maciel-Honda, P. O., de Oliveira Costa-Fernandes, T., Dos Santos, G. G., & Martins, M. L. (2023). Efficacy of chlorine, sodium chloride and trichlorfon baths against monogenean Dawestrema cycloancistrium parasite of pirarucu Arapaima gigas. Journal of Fish Diseases, 46(2), 113-126. https://doi.org/10.1111/jfd.13725

Drago, F., & Núñez, V. (2017). Clase Monogenea. En F. Drago (Ed.), Macroparásitos (pp. 69-82). Editorial de la Universidad Nacional de La Plata (EDULP). https://doi.org/10.35537/10915/62010

Enríquez-Benavides, L. E., López-Ceseña, J. Á. G., Rodríguez-Montes-de Oca, G. A., Abad-Rosales, S. M., Maciel-Ibarra, D. A., Rodríguez-Vázquez, E. A., & Grano-Maldonado, M. I. (2025). Effective control and treatment of Rhabdosynochus viridisi (Monogenea: Diplectanidae) in Centropomus viridis (Teleostei: Centropomidae) in marine aquaculture. Latin American Journal of Aquatic Research, 53(3). https://doi.org/10.3856/vol53-issue3-fulltext-3338

Fajer-Ávila, E. J., Velásquez-Medina, S. P., & Betancourt-Lozano, M. (2007). Effectiveness of treatments against eggs, and adults of Haliotrema sp. and Euryhaliotrema sp. (Monogenea: Ancyrocephalinae) infecting red snapper, Lutjanus guttatus. Aquaculture, 264(1-4), 66-72. https://doi.org/10.1016/j.aquaculture.2006.12.035

FAO. (2024). El estado mundial de la pesca y la acuicultura 2024: La transformación azul en acción. https://doi.org/10.4060/cd0683es

FAO. (2024). World Food and Agriculture – Statistical Yearbook 2024. https://doi.org/10.4060/cd2971en

Geisen, S., Mitchell, E. A., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., & Lara, E. (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 42(3), 293–323.

Grano Maldonado, M. I. (2004). Ciclo de vida de Heterobothrium ecuadori (Meserve, 1938) Stroston, 1946 (Monogenea: Diclidophoridae) ectoparásito de botete diana Shoeroides annulatus (Jenyns, 1842) [Tesis de maestría, Universidad Nacional Autónoma de México]. Repositorio Institucional de la UNAM. https://hdl.handle.net/20.500.14330/TES01000600405

Grano-Maldonado, M. I., Aguirre-Villaseñor, H., Betancourt-Lozano, M., & Fajer-Ávila, E. J. (2015). In vitro effect of low salinity on egg hatching and larval survival of Heterobothrium ecuadori (Monogenea) infecting bullseye puffer fish Sphoeroides annulatus. Aquaculture Research, 46(6), 1339–1343. https://doi.org/10.1111/are.12300

Grano-Maldonado, M. I., Rodríguez-Santiago, M. A., García-Vargas, F., Nieves-Soto, M., & Soares, F. (2018). An emerging infection caused by Gyrodactylus cichlidarum Paperna, 1968 (Monogenea: Gyrodactylidae) associated with massive mortality on farmed tilapia Oreochromis niloticus (L.) on the Mexican Pacific coast. Latin American Journal of Aquatic Research, 46(5), 961–968. https://doi.org/10.3856/vol46-issue5-fulltext-9

Grano-Maldonado, M. I., Roque, A., & Fajer-Ávila, E. J. (2010). Development of Heterobothrium ecuadori (Monogenea: Diclidophoridae) in Bullseye Puffer Fish Sphoeroides annulatus under experimental conditions. Fish Pathology, 45(4), 175–178. https://doi.org/10.3147/jsfp.45.175

Grano-Maldonado, M. I., Roque, A., Aguirre, H., & Fajer-Avila, E. (2011). Egg morphology, larval development and description of the oncomiracidium of Heterobothrium ecuadori (Monogenea: Diclidophoridae) parasitising the bullseye pufferfish, Sphoeroides annulatus. Helminthologia, 48(1), 51–55. https://doi.org/10.2478/s11687-011-0009-3

Hansen, H., Leshko, E., Rusch, J. C., Samokhvalov, I., Melnik, V., Mugue, N., & Parshukov, A. (2022). Gyrodactylus salaris Malmberg, 1957 (Monogenea, Gyrodactylidae) spreads further—a consequence of rainbow trout farming in Northern Russia. Aquatic Invasions, 17(2). https://doi.org/10.3391/ai.2022.17.2.06

Hoai, D. T., & Hutson, K. S. (2014). Reproductive strategies of the insidious fish ectoparasite, Neobenedenia sp. (Capsalidae: Monogenea). PLoS One, 9(9), e108801. https://doi.org/10.1371/journal.pone.0108801

Hoai, T. D. (2020). Reproductive strategies of parasitic flatworms (Platyhelminthes, Monogenea): the impact on parasite management in aquaculture. Aquaculture International, 28(1), 421–447. https://doi.org/10.1007/s10499-019-00471-6

Jia, T., Meng, F. Y., Xu, W. J., & Fan, L. X. (2025). Parasitic life and environment of monogenean: geometric morphometric study of haptoral anchors in seven Diplorchis species (Monogenea: Polystomatidae). BMC Zoology, 10(1), 5. https://doi.org/10.1186/s40850-025-00226-2

Jiang, Q., Bhattarai, N., Pahlow, M., & Xu, Z. (2022). Environmental sustainability and footprints of global aquaculture. Resources, Conservation and Recycling, 180, 106183. https://doi.org/10.1016/j.resconrec.2022.106183

Kearn, G. (1986). The eggs of Monogeneans. Advances in Parasitology, 25, 175–273. https://doi.org/10.1016/S0065-308X(08)60344-9

Kearn, G. C., Ogawa, K., & Maeno, Y. (1992). The oncomiracidium of Heteraxine heterocerca, a monogenean gill parasite of the yellowtail Seriola quinqueradiata. Publications of the Seto Marine Biological Laboratory, 35(6), 347–350.

Lazard, J., Baruthio, A., Mathé, S., Rey-Valette, H., Chia, E., Clément, O., & René, F. (2010). Aquaculture system diversity and sustainable development: fishfarms and their representation. Aquatic Living Resources, 23(2), 187–198. https://doi.org/10.1051/alr/2010018

Lester, R. J. G., & Moore, B. R. (2015). Parasites as valuable stock markers for fisheries in Australasia, East Asia and the Pacific Islands. Parasitology, 142(1), 36–53. https://doi.org/10.1017/S003118201400016X

Lim, S. Y., Ooi, A. L., & Wong, W. L. (2016). Gill monogeneans of Nile tilapia (Oreochromis niloticus) and red hybrid tilapia (Oreochromis spp.) from the wild and fish farms in Perak, Malaysia: infection dynamics and spatial distribution. SpringerPlus, 5(1), 1609. https://doi.org/10.1186/s40064-016-3266-2

Liu, H. R., Liu, Y. M., Hou, T. L., Li, C. T., & Zhang, Q. Z. (2021). Antiparasitic efficacy of crude plant extracts and compounds purified from plants against the fish monogenean Neobenedenia girellae. Journal of Aquatic Animal Health, 33(3), 155–161. https://doi.org/10.1002/aah.10128

Llewellyn, J. (1963). Larvae and larval development of monogeneans. Advances in Parasitology, 1, 287–326. https://doi.org/10.1016/S0065-308X(08)60506-0

López-Ceseña, J. A. G., Rodríguez-Montes de Oca, G. R., Hernández, A. B., Soto, M. N., & Grano-Maldonado, M. I. (2024). Tratamiento para el control de Gyrodactylus sp. y Cichlidogyrus sp. asociados con mortalidad en tilapia (Oreochromis niloticus). Revista Ciencias del Mar UAS, 1(2), 30–58.

López-Moreno, D., Yazdi, Z., Morales-Serna, F. N., Martínez-Brown, J. M., Ibarra-Castro, L., García-Gasca, A., & Soto, E. (2024). Respuesta histológica e inmune en el pez Centropomus viridis causadas por el parásito Rhabdosynochus viridisi. Revista MVZ Córdoba, 29(2). https://doi.org/10.21897/rmvz.3381

Maciel, P. O., Muniz, C. R., & Alves, R. R. (2017). Eggs hatching and oncomiracidia lifespan of Dawestrema cycloancistrium, a monogenean parasitic on Arapaima gigas. Veterinary Parasitology, 247, 57–63.

Mehlhorn, H. (2016). Worms (Helminths). In Animal parasites: Diagnosis, treatment, prevention (pp. 251–498). Springer International Publishing. https://doi.org/10.1007/978-3-319-46403-9_5

Mirabent-Casals, M., Caña-Bozada, V. H., Morales-Serna, F. N., Martínez-Brown, J. M., Medina-Guerrero, R. M., Hernández-Cornejo, R., & García-Gasca, A. (2025). Transcriptomic analysis of immune-related genes in Pacific white snook (Centropomus viridis) gills infected with the monogenean parasite Rhabdosynochus viridisi. Parasitology International, 104, Article 102981. https://doi.org/10.1016/j.parint.2024.102981

Mo, T. A. (2024). The battle against the introduced pathogenic monogenean Gyrodactylus salaris in Norwegian Atlantic salmon rivers and fish farms. Journal of Fish Diseases, 47(9), Article e13981. https://doi.org/10.1111/jfd.13981

Morales-Serna, F. N., Chapa-López, M., Martínez-Brown, J. M., Ibarra-Castro, L., Medina-Guerrero, R. M., & Fajer-Ávila, E. J. (2018). Efficacy of praziquantel and a combination anthelmintic (Adecto®) in bath treatments against Tagia ecuadori and Neobenedenia melleni (Monogenea), parasites of bullseye puffer fish. Aquaculture, 492, 361–368. https://doi.org/10.1016/j.aquaculture.2018.04.043

Morales-Serna, F. N., López-Moreno, D., Velázquez Garay, J. A., & Rendón-Martínez, L. A. (2025). Control of Neobenedenia sp. infestations in the ocean tank at Gran Acuario Mazatlán. Parasitologia, 5(2), Article 16. https://doi.org/10.3390/parasitologia5020016

Nielsen, C. (2003). Defining phyla: Morphological and molecular clues to metazoan evolution. Evolution & Development, 5(4), 386–393. https://doi.org/10.1046/j.1525-142X.2003.03046.x

Paululat, A., & Purschke, G. (2025). Platyhelminthes (Flatworms). In Metazoa–Morphology and evolution of animals: A practical guide to the dissection and comparative study of animals (pp. 27–47). Springer Berlin Heidelberg.

Poulin, R., & Kamiya, T. (2015). Parasites as biological tags of fish stocks: A meta-analysis of their discriminatory power. Parasitology, 142(1), 145–155. https://doi.org/10.1017/S003118201400016X

Pulido-Flores, G. (2024). Monogenea (Class). Concepts in animal parasitology, Ectoparasites (Vol. 5, pp. 733–742). Zea Books. https://doi.org/10.32873/unl.dc.ciap060

Repullés-Albelda, A., Holzer, A. S., Raga, J. A., & Montero, F. E. (2012). Oncomiracidial development, survival and swimming behaviour of the monogenean Sparicotyle chrysophrii (Van Beneden and Hesse, 1863). Aquaculture, 338, 47–55. https://doi.org/10.1016/j.aquaculture.2012.02.003

Revilla, D., García-Ándres, A., & Sánchez-Juárez, I. (2015). Identification of key productive sectors in the Mexican economy. Expert Journal of Economics, 3(1), 22–39.

Ribeiro, M. C., Lourenço-Marques, C., Baptista, T., Pousão-Ferreira, P., & Soares, F. (2025). First report of Calceostoma glandulosum (Monogenea) in Argyrosomus regius: Morphological and molecular characterization and temperature effects on life cycle. Aquaculture Research, 2025, Article 9397751. https://doi.org/10.1155/are/9397751

Ridgway, R. L. (2013). Biological control by augmentation of natural enemies: Insect and mite control with parasites and predators (11th ed.). Springer Science Business Media.

Roohi, J. D., Asl, A. D., Pourkazemi, M., & Shamsi, S. (2019). Occurrence of dactylogyrid and gyrodactylid Monogenea on common carp, Cyprinus carpio, in the Southern Caspian Sea Basin. Parasitology International, 73, Article 101977. https://doi.org/10.1016/j.parint.2019.101977

Rubtsova, N. Y., Heckmann, R. A., Smit, W. J., Luus-Powell, W. J., Halajian, A., & Roux, F. (2018). Morphological studies of developmental stages of Oculotrema hippopotami (Monogenea: Polystomatidae) infecting the eye of Hippopotamus amphibius (Mammalia: Hippopotamidae) using SEM and EDXA with notes on histopathology. The Korean Journal of Parasitology, 56(5), 463–471. https://doi.org/10.3347/kjp.2018.56.5.463

Tancredo, K. R., Marchiori, N. D., Pereira, S. A., & Martins, M. L. (2019). Toxicity of formalin for fingerlings of Cyprinus carpio var. koi and in vitro efficacy against Dactylogyrus minutus Kulwièc, 1927 (Monogenea: Dactylogyridae). Journal of Parasitic Diseases, 43(1), 46–53. https://doi.org/10.1007/s12639-018-1056-1

Trasviña-Moreno, A. G., Ascencio, F., Angulo, C., Hutson, K. S., Avilés-Quevedo, A., Inohuye-Rivera, R. B., & Pérez-Urbiola, J. C. (2019). Plant extracts as a natural treatment against the fish ectoparasite Neobenedenia sp. (Monogenea: Capsalidae). Journal of Helminthology, 93(1), 57–65. https://doi.org/10.1017/S0022149X17001122

Valles-Vega, G. I. (2020). Efecto de la temperatura en el sistema inmune de Seriola rivoliana contra la infestación de Neobenedenia sp. [Effect of temperature on the immune system of Seriola rivoliana against Neobenedenia sp. infestation] [Doctoral dissertation, Centro de Investigaciones Biológicas del Noroeste (CIBNOR-IPN)]. Repositorio Institucional CIBNOR.

Valles-Vega, I., Ascencio, F., Sicard-González, T., Angulo, C., Fajer-Avila, E. J., Inohuye-Rivera, R. B., & Pérez-Urbiola, J. C. (2019). Effects of temperature on the life cycle of Neobenedenia sp. (Monogenea: Capsalidae) from Seriola rivoliana (Almaco jack) in Bahía de La Paz, BCS, México. Parasitology Research, 118(12), 3267–3277. https://doi.org/10.1007/s00436-019-06460-1

Whittington, I. D., & Chisholm, L. A. (2008). Diseases caused by Monogenea. In Fish diseases (Vol. 2, pp. 697–737). CRC Press.

Whittington, I. D., Chisholm, L. A., & Rohde, K. (2000). The larvae of Monogenea (Platyhelminthes). Advances in Parasitology, 44, 139–232. https://doi.org/10.1016/S0065-308X(08)60232-8

Downloads

Published

2025-12-19

Most read articles by the same author(s)

Similar Articles

1-10 of 56

You may also start an advanced similarity search for this article.