El papel del Fitoplanctón y el Cambio Climático en ecosistemas marinos: desde el punto de vista de un biólogo

Autores/as

Palabras clave:

Fitoplancton, Cambio climático, Emisiones de CO2, Acidificación del Océano, Florecimientos algales nocivos

Resumen

Abstract

El propósito del presente manuscrito es puntualizar el estado de conocimiento de la función del Fitoplancton y sus afecciones por el cambio climático. En esta revisión, describimos la importancia ecológica, biológica y química del fitoplancton y su rol en la trofodinámica en las cadenas alimenticias. Así también se aborda los efectos del cambio climático sobre el fitoplancton: composición del fitoplancton, la reducción en biomasa, migración del fitoplancton hacia los polos, acidificación de los océanos y la aparición de ciertas especies y la proliferación de los florecimientos algales nocivos. Algunas medidas de mitigación y remediación son: el uso el uso de energía limpia y renovable, la reducción de las emisiones de CO2, reducción de efluentes con nutrientes en las cuencas y el reciclado son algunas de las estrategias actuales para reducir el impacto de las actividades humanas sobre el cambio climático.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Donk, E.V., Weyhenmeyer, G.A., Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6part2), 2283-2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

Agarwal, V., Chávez-Casillas, J., Inomura, K., Mou, C.B. ( 2024). Patterns in the temporal complexity of global chlorophyll concentration. Nature Communications 15, 1522 https://doi.org/10.1038/s41467-024-45976-8

Behrenfeld, M. J., Westberry, T. K., Boss, E., O'malley, R. T., Siegel, D. A., Wiggert, J. D., Franz, C.R., McClain C.R., Feldman, G,C., Doney, S.C., Moore, J.K., DallÓlmo G., Milligan A. I., Lima, I., Mahowald, N. (2009). Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences, 6(5), 779-794. https://doi.org/10.5194/bg-6-779-2009

Benedetti, F., Vogt, M., Elizondo, U. H., Righetti, D., Zimmermann, N. E., & Gruber, N. (2021). Major restructuring of marine plankton assemblages under global warming. Nature communications, 12(1), 5226. https://doi.org/10.1038/s41467-021-25385-x

Cael, B. B., Bisson, K., Boss, E., Dutkiewicz, S., & Henson, S. (2023). Global climate-change trends detected in indicators of ocean ecology. Nature, 619(7970), 551-554. https://doi.org/10.1038/s41586-023-06321-z

Cloern, J. E. (1996). Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics, 34(2), 127-168. https://doi.org/10.1029/96RG00986

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., & House, J. I. (2014). Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change (pp. 465-570). Cambridge University Press.

Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788-12793. https://doi.org/10.1073/pnas.0902080106

Dewar, R. C., Medlyn, B. E., & Mcmurtrie, R. E. (1999). Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global change biology, 5(5), 615-622. https://doi.org/10.1046/j.1365-2486.199

Diehl, S., Berger, S., Ptacnik, R., & Wild, A. (2002). Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology, 83(2), 399-411.

Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., & Berman-Frank, I. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 5(11), 1002-1006. https://doi.org/10.1038/nclimate2722

Dwivedi, S., & Ahmad, I. Z. (2023). Cyanobacteria in Ocean. Current Status of Marine Water Microbiology, 47-66.

Falkowski, P. G., & Oliver, M. J. (2007). Mix and match: how climate selects phytoplankton. Nature reviews microbiology, 5(10), 813-819. https://doi.org/10.1038/nrmicro1751

Fennel, K., & Testa, J. M. (2019). Biogeochemical controls on coastal hypoxia. Annual review of marine science, 11(1), 105-130. https://doi.org/10.1146/annurev-marine-010318-095138

Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. G. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237–240. https://doi.org/10.1126/science.281.5374.237

Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M., & Sommeijer, B. (2004). Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11), 2960-2970.

IPCC, (2007). Intergovernmental Panel on Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Editors: Core Writing Team, Pachauri, R. K., & Reisinger, A. Publisher: IPCC, Geneva, Switzerland.

Livingstone, D. M. (2003). Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic change, 57(1), 205-225. https://doi.org/10.1023/A:1022119503144

Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean alkalinity, buffering and biogeochemical processes. Reviews of Geophysics, 58(3), e2019RG000681. https://doi.org/10.1029/2019RG000681

Murphy, C. A., Arismendi, I., Taylor, G. A., & Johnson, S. L. (2019). Evidence for lasting alterations to aquatic food webs with short-duration reservoir draining. PLoS One, 14(2), e0211870. https://doi.org/10.1371/journal.pone.0211870

Moss, B. (2010). Ecology of fresh waters: a view for the twenty-first century. John Wiley & Sons

Pershing, A. J., & Stamieszkin, K. (2020). The North Atlantic ecosystem, from plankton to whales. Annual Review of Marine Science, 12(1), 339-359. DOI: 10.1146/annurev-marine-010419-010752

Pimm, S. L., Lawton, J. H., & Cohen, J. E. (1991). Food web patterns and their consequences. Nature, 350(6320), 669-674. https://doi.org/10.1038/350669a0

Jansson, C., Wullschleger, S. D., Kalluri, U. C., & Tuskan, G. A. (2010). Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience, 60(9), 685-696. https://doi.org/10.1525/bio.2010.60.9.6

Rabalais, N. N., Cai, W. J., Carstensen, J., Conley, D. J., Fry, B., Hu, X., ... & Zhang, J. (2014). Eutrophication-driven deoxygenation in the coastal ocean. Oceanography, 27(1), 172-183. https://doi.org/10.5670/oceanog.2014.21

Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65(3), 279-295. https://doi.org/10.1093/ICESJMS/FSN028

Salmaso, N. (2005). Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography, 50(2), 553-565.

Schmittner, A., Oschlies, A., Giraud, X., Eby, M., & Simmons, H. L. (2005). A global model of the marine ecosystem for long‐term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochemical Cycles, 19(3). https://doi:10.1029/2004GB002283

Sommer, U., 1989. Plankton Ecology: Succession in Plankton Communities. Springer, Berlin

Sweetman, AK, Smith, AJ, de Jonge, DSW et al. Evidencia de producción de oxígeno oscuro en el fondo marino abisal. Nat. Geosci. 17 , 737–739 (2024). https://doi.org/10.1038/s41561-024-01480-8

Wells, M., Burford, M., Kremp, A., Montresor, M., Pitcher, G., Richardson, A., ... & Chapra, S. (2021). Guidelines for the study of climate change effects on HABs. https://doi.org/10.25607/OBP-1692.

Wetzel, R. G. (2001). Limnology: lake and river ecosystems. gulf professional publishing.

Winder, M., & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia, 698(1), 5-16. https://doi.org/10.1007/s10750-012-1149-2

Zhang, Z. (2025). Responses of Marine Diatoms to Changing pCO2: Elemental Homeostasis and Metal Toxicity (Doctoral dissertation, Hong Kong University of Science and Technology (Hong Kong).

Descargas

Publicado

2025-12-19