In silico design of a DNA vaccine against Toxoplasma gondii based on ROP35 antigen epitopes specific for murine B and CD4+ T lymphocytes
Keywords:
Toxoplasma gondii, ROP35, Genetic vaccine, In silico prediction, B and T epitopesAbstract
Toxoplasmosis is a globally prevalent zoonosis caused by Toxoplasma gondii (T. gondii), with an incidence ranging from 30% to 70%. It primarily affects immunocompromised individuals and pregnant women, potentially leading to severe complications, including death. ROP proteins, which are located in the T. gondii rhoptries, are crucial for parasite invasion and persistence. Among them, ROP35 has been identified as a relevant antigen, making it a suitable target for the in silico development of a DNA vaccine to prevent T. gondii infection. Using the ROP35 sequence, B and T cell epitopes restricted to H2-IAd in BALB/c mice were predicted with MHC-II Binding and ElliPro software and further evaluated using VaxiJen 2.0 and MHCPred. The epitopes MPEQDLASGFL and WDDAHLVQVSTSHPD exhibited the highest antigenic properties for B and T CD4+ cells respectively. The corresponding genetic sequences were cloned into the pVAX1 expression vector, incorporating a start codon and the GSGGSG spacer sequence to ensure optimal expression. This construct, named pR35BT, enables the simultaneous synthesis of both epitopes, representing a significant step toward the development of a genetic vaccine against toxoplasmosis. It holds potential for in vitro and in vivo validation in murine models, contributing to the establishment of molecular foundations for toxoplasmosis prevention in humans.
Downloads
References
Boletín Epidemiológico. (s.f.). Índice de vigilancia epidemiológica, semana 52, 2024. Secretaría de Salud. http://www.gob.mx/salud/acciones-y-programas/direccion-general-de-epidemiologia-
Castillo-Morales, V. J., Acosta Viana, K. Y., Guzmán-Marín, E. D. S., Jiménez-Coello, M., Segura-Correa, J. C., Aguilar-Caballero, A. J., & Ortega-Pacheco, A. (2012). Prevalence and risk factors of
Toxoplasma gondii infection in domestic cats from the tropics of Mexico using serological and molecular tests. Interdisciplinary Perspectives on Infectious Diseases, 2012, 1–6. https://doi.org/10.1155/2012/529108
Da’dara, A. A., & Harn, D. A. (2005). DNA vaccines against tropical parasitic diseases. Expert Review of Vaccines, 4(4), 575–589. https://doi.org/10.1586/14760584.4.4.575
Dey, A., Chozhavel Rajanathan, T. M., Chandra, H., Pericherla, H. P. R., Kumar, S., Choonia, H. S., Bajpai, M., Singh, A. K., Sinha, A., Saini, G., Dalal, P., Vandriwala, S., Raheem, M. A., Divate, R. D., Navlani, N. L., Sharma, V., Parikh, A., Prasath, S., Sankar Rao, M., & Maithal, K. (2021). Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine, 39(30), 4108–4116. https://doi.org/10.1016/j.vaccine.2021.05.098
Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. The Open Vaccine Journal, 1, 22–26. https://doi.org/10.2174/1875035400801010022
Espinoza Rojas, J., López Mora, E., Dabanch Peña, J., & Cruz Choappa, R. (2022). Recomendaciones para el diagnóstico y tratamiento de la infección por Toxoplasma gondii [Recommendations for the diagnosis and treatment of infection by Toxoplasma gondii]. Revista Chilena de Infectología, 39(2), 175–184. https://doi.org/10.4067/S0716-10182022000200132
Fox, B. A., Rommereim, L. M., Guevara, R. B., Falla, A., Hortua Triana, M. A., Sun, Y., & Bzik, D. J. (2016). The Toxoplasma gondii rhoptry kinome is essential for chronic infection. mBio, 7(3), e00193-16. https://doi.org/10.1128/mBio.00193-16
Gaji, R. Y., Sharp, A. K., & Brown, A. M. (2021). Protein kinases in Toxoplasma gondii. International Journal for Parasitology, 51(6), 415–429. https://doi.org/10.1016/j.ijpara.2020.11.006
Guan, P., Doytchinova, I. A., Zygouri, C., & Flower, D. R. (2003). MHCPred: A server for quantitative prediction of peptide-MHC binding. Nucleic Acids Research, 31(13), 3621–3624. https://doi.org/10.1093/nar/gkg510
Khobragade, A., Bhate, S., Ramaiah, V., Deshpande, S., Giri, K., Phophle, H., Supe, P., Godara, I., Revanna, R., Nagarkar, R., Sanmukhani, J., Dey, A., Rajanathan, T. M. C., Kansagra, K., & Koradia, P. (2022). Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. The Lancet, 399(10332), 1313–1321. https://doi.org/10.1016/S0140-6736(22)00151-9
Lagos, M., Díaz, C., & Hernández, P. (2020). Immune response and allergies to vaccines. Revista Médica Clínica Las Condes, 31(3), 256–269. https://doi.org/10.1016/j.rmclc.2020.04.003
Mani, R., Abdelaziz, M. H., Ochiai, E., Sa, Q., Fox, B. A., Bzik, D. J., & Suzuki, Y. (2023). Dense granule protein 3 of Toxoplasma gondii plays a crucial role in the capability of the tissue cysts of the parasite to persist in the presence of anti-cyst CD8+ T cells during the chronic stage of infection. Frontiers in Immunology, 14, 1272221. https://doi.org/10.3389/fimmu.2023.1272221
Molan, A., Nosaka, K., Hunter, M., & Wang, W. (2019). Global status of Toxoplasma gondii infection: Systematic review and prevalence snapshots. Tropical Biomedicine, 36(4), 898–908. (Nota: Página estimada agregada si es necesaria; verificar si deseas precisión exacta)
Ojha, R., Pandey, R. K., & Prajapati, V. K. (2020). Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. International Journal of Biological Macromolecules, 156, 548–557. https://doi.org/10.1016/j.ijbiomac.2020.04.097
Pollard, A. J., & Bijker, E. M. (2021). A guide to vaccinology: From basic principles to new developments. Nature Reviews Immunology, 21(2), 83–100. https://doi.org/10.1038/s41577-020-00479-7
Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. https://doi.org/10.1186/1471-2105-9-514
Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2021). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
Al-Malki, E. (2021). Toxoplasmosis: Stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status. Saudi Journal of Biological Sciences, 28(1), 962–969. https://doi.org/10.1016/j.sjbs.2020.11.007
Smith, N. C., Goulart, C., Hayward, J. A., Kupz, A., Miller, C. M., & van Dooren, G. G. (2021). Control of human toxoplasmosis. International Journal for Parasitology, 51(2–3), 95–121. https://doi.org/10.1016/j.ijpara.2020.11.001
Wan, C., Zhang, J., Zhao, L., Cheng, X., Gao, C., Wang, Y., Xu, W., Zou, Q., & Gu, J. (2019). Rational design of a chimeric derivative of PcrV as a subunit vaccine against Pseudomonas aeruginosa. Frontiers in Immunology, 10, 781. https://doi.org/10.3389/fimmu.2019.00781
World Health Organization (WHO). (2022). Recomendaciones provisionales sobre el uso de la vacuna BNT162b2 de Pfizer y BioNTech contra la COVID-19 en el marco de la Lista OMS de Uso en Emergencias. https://www.who.int/groups/strategic-advisory-group-of-experts-on-immunization/covid-19-materials
Yassein, A. A. M., Teleb, A. A., Hassan, G. M., & El Fiky, Z. A. (2021). The immune response and protective efficacy of a potential DNA vaccine against virulent Pasteurella multocida. Journal of Genetic Engineering and Biotechnology, 19(1), 1–10. https://doi.org/10.1186/s43141-021-00180-9
Yurina, V., & Adianingsih, O. R. (2022). Predicting epitopes for vaccine development using bioinformatics tools. Therapeutic Advances in Vaccines and Immunotherapy, 10, 25151355221100218. https://doi.org/10.1177/25151355221100218
Zhou, X., Zheng, W., Li, Y., Pearce, R., Zhang, C., Bell, E. W., Zhang, G., & Zhang, Y. (2022). I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nature Protocols, 17(10), 2326–2353. https://doi.org/10.1038/s41596-022-00728-0
Zhu, Y., Xu, Y., Hong, L., Zhou, C., & Chen, J. (2021). Immunization with a DNA vaccine encoding the Toxoplasma gondii’s GRA39 prolongs survival and reduces brain cyst formation in a murine model. Frontiers in Microbiology, 12, 630682. https://doi.org/10.3389/fmicb.2021.630682

Downloads
Published
Data Availability Statement
Issue
Section
Categories
License
Copyright (c) 2025 QUIBIOUAS, Journal of Biological Chemical Sciences

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.