Growth kinetics and chlorophyll determination of Scenedesmus microalgae consortium using different culture media.

Evaluation of Chlorophyll Growth in the Genus Scenedesmus

Authors

Keywords:

Bioprocesses, Microalgae, Kinetic parameters

Abstract

Microalgae are photosynthetic microorganisms that have garnered increasing interest due to their potential in industrial and biotechnological applications. The aim of this study was to analyze the effect of two growth media (Guillard & amp; Ryther F/2 Media, y Bold’s Basal Medium) on growth parameters and chlorophyll production in a native consortium from Sinaloa belonging to the genus Scenedesmus. The results have shown the growth medium influences the outcomes, with a doubling time (dt) of 0.9259 days in BBM and 1.0804 days in F/2. Similarly, the maximum cell densities reached were 6.03 ± 0.34 x 10⁶ cells mL⁻¹ for BBM and 14.06 ± 3.20 x 10⁶ cells mL⁻¹ for F/2. According to these results, it can be inferred that BBM favors the doubling time, while F/2 promotes a higher maximum cell density, potentially translating into more biomass per liter. Evaluating growth kinetics in different culture media is crucial to optimizing cultivation conditions, maximizing growth rates and accumulation of target compounds, and identifying optimal conditions for large-scale production, thus improving the efficiency, sustainability, and economic viability of a biorefinery.

Downloads

Download data is not yet available.

Author Biographies

  • Camacho-Barraza T.J., Sonora Institute of Technology

    She is a student at the Sonora Institute of Technology and holds a Bachelor's Degree in Biotechnology Engineering from the same institution. She has participated in five national and international conferences. Contact e-mail: teresita.camacho212928@potros.itson.edu.mx

  • Domínguez-López A.V., Autonomous University of Baja California

    She is a student at the Autonomous University of Baja California and holds a Bachelor's Degree in Bioengineering from the same institution. She has a PRODEP Profile and has participated in one national and international conference. Additional information: CVU number 2131309. Contact e-mail: azul.dominguez@uabc.edu.mx

  • Ramírez-Medina J.A., Autonomous University of Sinaloa

    He is a student at the Autonomous University of Sinaloa, Faculty of Chemical-Biological Sciences, and holds a Bachelor's Degree in Genomic Biotechnology from the same institution. Additional information: CVU number 2131301. Contact e-mail: jesusaaron1f@gmail.com

  • Luna-Avelar K.D., Center for Research in Food and Development (CIAD)

    She is a Postdoctoral Researcher with the program Estancia Posdoctoral por México under the Secretariat of Science, Humanities, Technology and Innovation (SECIHTI), and holds a Ph.D. in Food Science and Technology from the Autonomous University of Sinaloa. She is a member of the National System of Researchers (SNII) at the Candidate level, and an Honorary Researcher at SSIT. She has published three articles in indexed journals and four in peer-reviewed journals, with a total of 38 citations to date and an h-index of 2. She has participated in 16 national and international conferences. Throughout her career, she has supervised six undergraduate theses in the field of Agricultural, Livestock, Forestry, and Ecosystem Sciences.

    Additional information: Her research focuses on the application of bioprocesses to valorize agro-industrial waste. Contact e-mail: karla.luna@ciad.mx

  • Santos-Ballardo D.U., Center for Research in Food and Development (CIAD)

    He is a Professor/Researcher at the Center for Research in Food and Development (CIAD) and holds a Ph.D. in Environmental Biotechnology from the Autonomous University of Sinaloa. He is a member of the National System of Researchers (SNII) at Level 1 and an Honorary Researcher at SSIT. He has published 13 articles in indexed journals and 20 in peer-reviewed journals, with a total of 389 citations to date and an h-index of 10. He has participated in 102 national and international conferences. Throughout his career, he has supervised 6 undergraduate theses, 6 master’s theses, and 3 doctoral dissertations in the field of Environmental Biotechnology. Additional information: He is a member of the Science Communicators Network of Sinaloa (RED-C). Contact e-mail: ulises.ballardo@ciad.mx

  • Gárate-Osuna A.J., Autonomous University of Sinaloa

    He is a Ph.D. student in Biotechnology Sciences at the Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa (currently in the process of degree completion), and holds a Master's Degree in Applied Sciences with a focus on Renewable Energies and Sustainable Development from the Polytechnic University of Sinaloa. He has published one article in an indexed journal and four in peer-reviewed journals, with a total of 3 citations to date and an h-index of 1. He has participated in 23 national and international conferences. Additional information: SECIHTI CVU number 932531. Delegate member of the 2025 Youth Climate Summit. Contact e-mail: andreagarateosuna@gmail.com

References

Barraza, C. R. M. (2011). Inducción lipídica por limitación de nutrientes en las microalgas Scenedesmus dimorphus y Chlorella sorokiniana [Tesis de maestría, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. https://cimav.repositorioinstitucional.mx/jspui/handle/1004/2306

Boulay, C., Abasova, L., Six, C., Vass, I., & Kirilovsky, D. (2008). Occurrence and function of the orange carotenoid protein in photoprotective mechanism in various cyanobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777(10), 1344–1354. https://doi.org/10.1016/j.bbabio.2008.07.002

Brito, D., Castro, A., Colivet, J., Gómez, E., & Mora, R. (2013). Cinética de crecimiento de un cultivo mixto de las microalgas Hyaloraphidium contortum y Pseudokirchneriella subcapitata. Interciencia, 38(8), 604–608. https://www.redalyc.org/pdf/339/33928557009.pdf

Brown, R. M., Jr., Larson, D. A., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143(3606), 583–585. https://doi.org/10.1126/science.143.3606.583

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Dean, A. P., Sigee, D. C., & Pittman, B. E. J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065

Díaz-Escudero, J. D., Cárdenas, D. A. C. A., & Ayala, D. G. (2023). Cinética de crecimiento y producción de pigmentos de cepas nativas de Scenedesmus aisladas de un sistema de tratamiento de agua residual en La Guajira colombiana. Ciencia e Ingeniería, 10(1), e8091836. https://doi.org/10.5281/zenodo.8091836

Difusa, A., Talukdar, J., Kalita, M. C., Mohanty, K., & Goud, V. V. (2015). Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels, 6(1–2), 37–44. https://doi.org/10.1080/17597269.2015.1045274

Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2020). HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Current Research in Food Science, 3, 100–112. https://doi.org/10.1016/j.crfs.2020.03.009

Ferreira, V. S., Pinto, R. F., & Sant’Anna, C. (2016). Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. Journal of Applied Microbiology, 120(3), 661–670. https://doi.org/10.1111/jam.13007

da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20. https://doi.org/10.1007/s11274-016-2181-6

Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A., & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1–2), 105–116. https://doi.org/10.1016/S0044-8486(98)00278-6

Fasaei, F., Bitter, J. H., Slegers, P. M., & Van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362. https://doi.org/10.1016/j.algal.2017.11.038

García-Cañedo, J. C., Cristiani-Urbina, E., Flores-Ortiz, C. M., Ponce-Noyola, T., & Olivia, R. (2009). Obtención de carotenoides a partir de la microalga Scenedesmus incrassatulus. Memorias del Congreso de la Sociedad Mexicana de Biotecnología y Bioingeniería. https://smbb.mx/congresos%20smbb/acapulco09/TRABAJOS/AREA_III/OIII-10.pdf

Georgiopoulou, I., Louli, V., & Magoulas, K. (2023). Comparative study of conventional, microwave-assisted and supercritical fluid extraction of bioactive compounds from microalgae: The case of Scenedesmus obliquus. Separations, 10(5), 290. https://doi.org/10.3390/separations10050290

Godoy-Hernández, G., & Vázquez-Flota, F. A. (2006). Growth measurements: Estimation of cell division and cell expansion. In F. A. Vázquez-Flota & J. J. Loyola-Vargas (Eds.), Plant cell culture protocols (pp. 51–58). Humana Press. https://doi.org/10.1385/1-59259-959-1:051

Halim, R., & Danquah, M. K. (2013). Bioprocess development for chlorophyll extraction from microalgae. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 365–379). Springer. https://doi.org/10.1007/978-1-4614-3348-4_34

Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49(2), 157–173. https://doi.org/10.4067/S0718-19572014000200001

Herrera, M., & Roca, M. (2023). Microalgal chlorophylls for food/feed applications. In Handbook of food and feed from microalgae (pp. 147–160). Academic Press. https://doi.org/10.1016/B978-0-323-99196-4.00041-3

Ishaq, A. G., Matias-Peralta, H. M., & Basri, H. (2016). Bioactive compounds from green microalga Scenedesmus and its potential applications: A brief review. Journal of Tropical Agricultural Science, 39(1), 13–20. http://psasir.upm.edu.my/id/eprint/58220/1/JTAS%20Vol.%2039%20%281%29%20Feb.%202016%20%28View%20Full%20Journal%29.pdf#page=13

Iba, W., Akib, N. I., Jumardin, L. O. M., Arif, B., Yosalina, S., & Andas, J. A. (2023). Organic culture media for sustainable carotenoid production from microalgae. IntechOpen. https://doi.org/10.5772/intechopen.109789

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x

Khodadadianzaghmari, F., Jahadi, M., & Goli, M. (2024). Biochemical profile of Scenedesmus isolates, with a main focus on the fatty acid profile. Food Science & Nutrition, 12(8), 5922–5931. https://doi.org/10.1002/fsn3.425

Lodi, A., Binaghi, L., De Faveri, D., Carvalho, J. C. M., Converti, A., & Del Borghi, M. (2005). Fed-batch mixotrophic cultivation of Arthrospira (Spirulina platensis, Cyanophycea) with carbon source pulse feeding. Annals of Microbiology, 55(3), 181–185. https://www.cabidigitallibrary.org/doi/full/10.5555/20053180728

Maroneze, M. M., Herrera, C. A. M., & Jiménez, A. M. (2021). Perspectivas sobre los sistemas de cultivo de microalgas: Una revisión crítica [Insights into microalgae culture systems: A critical review]. BioTecnología, 25(5), 11–34. https://smbb.mx/wp-content/uploads/2021/12/Manzoni-Maroneze-et-al.-2021.pdf

Maroneze, M. M., Zepka, L. Q., Lopes, E. J., Pérez-Gálvez, A., & Roca, M. (2019). Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of Scenedesmus obliquus. Antioxidants, 8(12), 600. https://doi.org/10.3390/antiox8120600

Mikschofsky, H., Hammer, M., Schmidtke, J., König, P., Keil, G., Schirrmeier, H., & Broer, I. (2009). Optimization of growth performance of freshly induced carrot suspensions concerning PMP production. In Vitro Cellular and Developmental Biology - Plant, 45, 740–749. https://doi.org/10.1007/s11627-008-9189-z

Morales, E., Macías, D., García, L., Loor, Y., & Plúas, L. (2019). Efecto de la salinidad y pH en la composición bioquímica de la microalga Scenedesmus sp. en cultivos discontinuos. Revista Científica Ciencias Naturales y Ambientales, 13(1), 50–56. https://doi.org/10.53591/cna.v13i1.352

Morales, E., Luna, V., Navarro, L., Santana, V., Gordillo, A., & Arévalo, A. (2017). Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34, 129–149. https://doi.org/10.26807/remcb.v34i1-2.240

Nichols, H. W., & Bold, H. C. (1965). Trichosarcina polymorpha gen. et sp. nov. Journal of Phycology, 1(1), 34–38. https://doi.org/10.1111/j.1529-8817.1965.tb04552.x

Ozkurt, I. (2009). Qualifying of safflower and algae for energy. Energy Education Science and Technology Part A - Energy Science and Research, 23, 145–151. https://doi.org/10.1007/978-1-84996-050-2

Phuong, N. T. D., & Ly, D. T. B. (2023). Investigation of the influence of microalgal culture medium on biomass production. Vietnam Journal of Biotechnology, 21(4), 699–705. https://doi.org/10.15625/1811-4989/20567

Price, N. M., & Harrison, P. J. (1987). Comparison of methods for the analysis of dissolved urea in seawater. Marine Biology, 94, 307–317. https://doi.org/10.1007/BF00392945

Pratiwi, N. T. M., Widigdo, B., Krisanti, M., Ayu, I. P., & Iswantari, A. (2023). The potential of modified karst water as a substitute for microalgae culture media. In IOP Conference Series: Earth and Environmental Science (Vol. 1260, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1755-1315/1260/1/012007

Quevedo, C., Morales, S. P., & Acosta, A. (2008). Scenedesmus sp. growth in different culture mediums for microalgal protein production. Vitae, 15(1). https://www.redalyc.org/pdf/1698/169815394004.pdf

Ribeiro-Rodrigues, L., Arenzon, A., Raya-Rodríguez, M., & Fontoura, N. (2011). Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 225–228. https://doi.org/10.5897/JECE2011.025

Rinawati, M., Sari, L. A., & Pursetyo, K. T. (2020). Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. In IOP Conference Series: Earth and Environmental Science (Vol. 441, No. 1, p. 012056). IOP Publishing. https://doi.org/10.1088/1755-1315/441/1/012056

Rinanti, A., Kardena, E., Astuti, D. I., & Dewi, K. (2013). Growth response and chlorophyll content of Scenedesmus obliquus cultivated in different artificial media. Asian Journal of Environment Biology, 1(1), 1–9. https://doi.org/10.13140/RG.2.1.3370.7926

Santo, G. E., Barros, A., Costa, M., Pereira, H., Trovão, M., Cardoso, H., ... & Silva, J. L. (2023). Scenedesmus rubescens heterotrophic production strategies for added value biomass. Marine Drugs, 21(7), 411. https://doi.org/10.3390/md21070411

Santos-Ballardo, D. U., Rossi, S., Hernández, V., Gómez, R. V., del Carmen Rendón-Unceta, M., Caro-Corrales, J., & Valdez-Ortiz, A. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448, 87–92. https://doi.org/10.1016/j.aquaculture.2015.05.044

Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58–72. https://doi.org/10.1016/j.procbio.2020.05.025

Shaikh, R., Rizvi, A., Pandit, S., Desai, N., & Patil, R. (2022). Microalgae: Classification, bioactives, medicinal properties, industrial applications, and future prospectives. En An Integration of Phycoremediation Processes in Wastewater Treatment (pp. 451–486). Elsevier. https://doi.org/10.1016/B978-0-12-823499-0.00004-3

Sun, D., Wu, S., Li, X., Ge, B., Zhou, C., Yan, X., ... & Cheng, P. (2024). The structure, functions and potential medicinal effects of chlorophylls derived from microalgae. Marine Drugs, 22(2), 65. https://doi.org/10.3390/md22020065

Tapia-López, L., Chairez, I., Guerrero-Barajas, C., & Fernandez-Linares, L. C. (2024). Effect of nitrogen source and its concentration on Scenedesmus dimorphus productivity under photoautotrophic growth conditions. Authorea Preprints. https://doi.org/10.22541/au.170664855.50804907/v1

Thakur, N., Gurav, R., Yang, Y. H., & Bhatia, S. K. (2022). Microalgal consortia and their biotechnological applications. En Algal Biorefineries and the Circular Bioeconomy (pp. 277–301). CRC Press. https://doi.org/10.1201/9781003195429-8

Udayan, A., Pandey, A. K., Sirohi, R., Sreekumar, N., Sang, B. I., Sim, S. J., ... & Pandey, A. (2023). Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochemistry Reviews, 22(4), 833–860. https://doi.org/10.1007/s11101-021-09784-y

Pandey, A., Shah, R., Yadav, P., Verma, R., & Srivastava, S. (2020). Harvesting of freshwater microalgae Scenedesmus sp. by electro–coagulation–flocculation for biofuel production: Effects on spent medium recycling and lipid extraction. Environmental Science and Pollution Research, 27, 3497–3507. https://doi.org/10.1007/s11356-019-06897-y

Verduga, M. E. (2020). Cultivo en batch de Scenedesmus spp. en aguas residuales de industrias lácteas: Crecimiento, productividad y composición bioquímica [Tesis doctoral, Universidad de Guayaquil]. http://repositorio.ug.edu.ec/handle/redug/48682

Vázquez, C. G., & Ayala, I. A. (2017). Aislamiento, identificación y curva de crecimiento de la microalga Scenedesmus obliquus con fines biotecnológicos. Jóvenes en la Ciencia, 3(1), 144–148. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/860

Vázquez-Romero, B., Perales, J. A., Vree, J. H., Böpple, H., Steinrücken, P., Barbosa, M. J., Kleinegris, D. M. M., & Ruiz, J. (2022). Techno-economic analysis of microalgae production for aquafeed in Norway. Algal Research, 64, 102679. https://doi.org/10.1016/j.algal.2022.102679

Wibisono, Y., Agung Nugroho, W., Akbar Devianto, L., Adi Sulianto, A., & Roil Bilad, M. (2019). Microalgae in food–energy–water nexus: A review on progress of forward osmosis applications. Membranes, 9(12), 166. https://doi.org/10.3390/membranes9120166

Yadav, K., Nikalje, G. C., Pramanik, D., Suprasanna, P., & Rai, M. P. (2023). Screening of the most effective media for bioprospecting three indigenous freshwater microalgae species. International Journal of Plant Biology, 14(3), 558–570. https://doi.org/10.3390/ijpb14030044

Zhang, Y., Ren, L., Chu, H., Zhou, X., Yao, T., & Zhang, Y. (2019). Optimization for Scenedesmus obliquus cultivation: The effects of temperature, light intensity and pH on growth and biochemical composition. Microbiology and Biotechnology Letters, 47(4), 614–620. https://doi.org/10.4014/mbl.1906.06005

Ziganshina, E. E., Bulynina, S. S., Yureva, K. A., & Ziganshin, A. M. (2023). Optimization of photoautotrophic growth regimens of Scenedesmaceae alga: The influence of light conditions and carbon dioxide concentrations. Applied Sciences, 13(23), 12753. https://doi.org/10.3390/app132312753

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., & Liu, T. (2011). Effect of cultivation mode on microalgal growth and CO₂ fixation. Chemical Engineering Research and Design, 89(9), 1758–1762. https://doi.org/10.1016/j.cherd.2011.02.018

Downloads

Published

2025-06-24

How to Cite

Camacho Barraza, T. de J., Domínguez-López, A. V., Ramírez Medina, J. A. ., Luna-Avelar, K. D., Santos-Ballardo, D. U., & Gárate Osuna, A. de J. (2025). Growth kinetics and chlorophyll determination of Scenedesmus microalgae consortium using different culture media.: Evaluation of Chlorophyll Growth in the Genus Scenedesmus. QUIBIOUAS, Journal of Biological Chemical Sciences, 3, 48-59. https://revistas.uas.edu.mx/index.php/QBU/article/view/1090

Similar Articles

You may also start an advanced similarity search for this article.