Growth kinetics and chlorophyll determination of Scenedesmus microalgae consortium using different culture media.
Evaluation of Chlorophyll Growth in the Genus Scenedesmus
Keywords:
Bioprocesses, Microalgae, Kinetic parametersAbstract
Microalgae are photosynthetic microorganisms that have garnered increasing interest due to their potential in industrial and biotechnological applications. The aim of this study was to analyze the effect of two growth media (Guillard & amp; Ryther F/2 Media, y Bold’s Basal Medium) on growth parameters and chlorophyll production in a native consortium from Sinaloa belonging to the genus Scenedesmus. The results have shown the growth medium influences the outcomes, with a doubling time (dt) of 0.9259 days in BBM and 1.0804 days in F/2. Similarly, the maximum cell densities reached were 6.03 ± 0.34 x 10⁶ cells mL⁻¹ for BBM and 14.06 ± 3.20 x 10⁶ cells mL⁻¹ for F/2. According to these results, it can be inferred that BBM favors the doubling time, while F/2 promotes a higher maximum cell density, potentially translating into more biomass per liter. Evaluating growth kinetics in different culture media is crucial to optimizing cultivation conditions, maximizing growth rates and accumulation of target compounds, and identifying optimal conditions for large-scale production, thus improving the efficiency, sustainability, and economic viability of a biorefinery.
Downloads
References
Barraza, C. R. M. (2011). Inducción lipídica por limitación de nutrientes en las microalgas Scenedesmus dimorphus y Chlorella sorokiniana [Tesis de maestría, Centro de Investigación en Materiales Avanzados]. Repositorio Institucional CIMAV. https://cimav.repositorioinstitucional.mx/jspui/handle/1004/2306
Boulay, C., Abasova, L., Six, C., Vass, I., & Kirilovsky, D. (2008). Occurrence and function of the orange carotenoid protein in photoprotective mechanism in various cyanobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777(10), 1344–1354. https://doi.org/10.1016/j.bbabio.2008.07.002
Brito, D., Castro, A., Colivet, J., Gómez, E., & Mora, R. (2013). Cinética de crecimiento de un cultivo mixto de las microalgas Hyaloraphidium contortum y Pseudokirchneriella subcapitata. Interciencia, 38(8), 604–608. https://www.redalyc.org/pdf/339/33928557009.pdf
Brown, R. M., Jr., Larson, D. A., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143(3606), 583–585. https://doi.org/10.1126/science.143.3606.583
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
Dean, A. P., Sigee, D. C., & Pittman, B. E. J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065
Díaz-Escudero, J. D., Cárdenas, D. A. C. A., & Ayala, D. G. (2023). Cinética de crecimiento y producción de pigmentos de cepas nativas de Scenedesmus aisladas de un sistema de tratamiento de agua residual en La Guajira colombiana. Ciencia e Ingeniería, 10(1), e8091836. https://doi.org/10.5281/zenodo.8091836
Difusa, A., Talukdar, J., Kalita, M. C., Mohanty, K., & Goud, V. V. (2015). Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels, 6(1–2), 37–44. https://doi.org/10.1080/17597269.2015.1045274
Fernandes, A. S., Petry, F. C., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2020). HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Current Research in Food Science, 3, 100–112. https://doi.org/10.1016/j.crfs.2020.03.009
Ferreira, V. S., Pinto, R. F., & Sant’Anna, C. (2016). Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. Journal of Applied Microbiology, 120(3), 661–670. https://doi.org/10.1111/jam.13007
da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20. https://doi.org/10.1007/s11274-016-2181-6
Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A., & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166(1–2), 105–116. https://doi.org/10.1016/S0044-8486(98)00278-6
Fasaei, F., Bitter, J. H., Slegers, P. M., & Van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362. https://doi.org/10.1016/j.algal.2017.11.038
García-Cañedo, J. C., Cristiani-Urbina, E., Flores-Ortiz, C. M., Ponce-Noyola, T., & Olivia, R. (2009). Obtención de carotenoides a partir de la microalga Scenedesmus incrassatulus. Memorias del Congreso de la Sociedad Mexicana de Biotecnología y Bioingeniería. https://smbb.mx/congresos%20smbb/acapulco09/TRABAJOS/AREA_III/OIII-10.pdf
Georgiopoulou, I., Louli, V., & Magoulas, K. (2023). Comparative study of conventional, microwave-assisted and supercritical fluid extraction of bioactive compounds from microalgae: The case of Scenedesmus obliquus. Separations, 10(5), 290. https://doi.org/10.3390/separations10050290
Godoy-Hernández, G., & Vázquez-Flota, F. A. (2006). Growth measurements: Estimation of cell division and cell expansion. In F. A. Vázquez-Flota & J. J. Loyola-Vargas (Eds.), Plant cell culture protocols (pp. 51–58). Humana Press. https://doi.org/10.1385/1-59259-959-1:051
Halim, R., & Danquah, M. K. (2013). Bioprocess development for chlorophyll extraction from microalgae. In J. W. Lee (Ed.), Advanced biofuels and bioproducts (pp. 365–379). Springer. https://doi.org/10.1007/978-1-4614-3348-4_34
Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49(2), 157–173. https://doi.org/10.4067/S0718-19572014000200001
Herrera, M., & Roca, M. (2023). Microalgal chlorophylls for food/feed applications. In Handbook of food and feed from microalgae (pp. 147–160). Academic Press. https://doi.org/10.1016/B978-0-323-99196-4.00041-3
Ishaq, A. G., Matias-Peralta, H. M., & Basri, H. (2016). Bioactive compounds from green microalga Scenedesmus and its potential applications: A brief review. Journal of Tropical Agricultural Science, 39(1), 13–20. http://psasir.upm.edu.my/id/eprint/58220/1/JTAS%20Vol.%2039%20%281%29%20Feb.%202016%20%28View%20Full%20Journal%29.pdf#page=13
Iba, W., Akib, N. I., Jumardin, L. O. M., Arif, B., Yosalina, S., & Andas, J. A. (2023). Organic culture media for sustainable carotenoid production from microalgae. IntechOpen. https://doi.org/10.5772/intechopen.109789
Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x
Khodadadianzaghmari, F., Jahadi, M., & Goli, M. (2024). Biochemical profile of Scenedesmus isolates, with a main focus on the fatty acid profile. Food Science & Nutrition, 12(8), 5922–5931. https://doi.org/10.1002/fsn3.425
Lodi, A., Binaghi, L., De Faveri, D., Carvalho, J. C. M., Converti, A., & Del Borghi, M. (2005). Fed-batch mixotrophic cultivation of Arthrospira (Spirulina platensis, Cyanophycea) with carbon source pulse feeding. Annals of Microbiology, 55(3), 181–185. https://www.cabidigitallibrary.org/doi/full/10.5555/20053180728
Maroneze, M. M., Herrera, C. A. M., & Jiménez, A. M. (2021). Perspectivas sobre los sistemas de cultivo de microalgas: Una revisión crítica [Insights into microalgae culture systems: A critical review]. BioTecnología, 25(5), 11–34. https://smbb.mx/wp-content/uploads/2021/12/Manzoni-Maroneze-et-al.-2021.pdf
Maroneze, M. M., Zepka, L. Q., Lopes, E. J., Pérez-Gálvez, A., & Roca, M. (2019). Chlorophyll oxidative metabolism during the phototrophic and heterotrophic growth of Scenedesmus obliquus. Antioxidants, 8(12), 600. https://doi.org/10.3390/antiox8120600
Mikschofsky, H., Hammer, M., Schmidtke, J., König, P., Keil, G., Schirrmeier, H., & Broer, I. (2009). Optimization of growth performance of freshly induced carrot suspensions concerning PMP production. In Vitro Cellular and Developmental Biology - Plant, 45, 740–749. https://doi.org/10.1007/s11627-008-9189-z
Morales, E., Macías, D., García, L., Loor, Y., & Plúas, L. (2019). Efecto de la salinidad y pH en la composición bioquímica de la microalga Scenedesmus sp. en cultivos discontinuos. Revista Científica Ciencias Naturales y Ambientales, 13(1), 50–56. https://doi.org/10.53591/cna.v13i1.352
Morales, E., Luna, V., Navarro, L., Santana, V., Gordillo, A., & Arévalo, A. (2017). Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34, 129–149. https://doi.org/10.26807/remcb.v34i1-2.240
Nichols, H. W., & Bold, H. C. (1965). Trichosarcina polymorpha gen. et sp. nov. Journal of Phycology, 1(1), 34–38. https://doi.org/10.1111/j.1529-8817.1965.tb04552.x
Ozkurt, I. (2009). Qualifying of safflower and algae for energy. Energy Education Science and Technology Part A - Energy Science and Research, 23, 145–151. https://doi.org/10.1007/978-1-84996-050-2
Phuong, N. T. D., & Ly, D. T. B. (2023). Investigation of the influence of microalgal culture medium on biomass production. Vietnam Journal of Biotechnology, 21(4), 699–705. https://doi.org/10.15625/1811-4989/20567
Price, N. M., & Harrison, P. J. (1987). Comparison of methods for the analysis of dissolved urea in seawater. Marine Biology, 94, 307–317. https://doi.org/10.1007/BF00392945
Pratiwi, N. T. M., Widigdo, B., Krisanti, M., Ayu, I. P., & Iswantari, A. (2023). The potential of modified karst water as a substitute for microalgae culture media. In IOP Conference Series: Earth and Environmental Science (Vol. 1260, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1755-1315/1260/1/012007
Quevedo, C., Morales, S. P., & Acosta, A. (2008). Scenedesmus sp. growth in different culture mediums for microalgal protein production. Vitae, 15(1). https://www.redalyc.org/pdf/1698/169815394004.pdf
Ribeiro-Rodrigues, L., Arenzon, A., Raya-Rodríguez, M., & Fontoura, N. (2011). Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology, 225–228. https://doi.org/10.5897/JECE2011.025
Rinawati, M., Sari, L. A., & Pursetyo, K. T. (2020). Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. In IOP Conference Series: Earth and Environmental Science (Vol. 441, No. 1, p. 012056). IOP Publishing. https://doi.org/10.1088/1755-1315/441/1/012056
Rinanti, A., Kardena, E., Astuti, D. I., & Dewi, K. (2013). Growth response and chlorophyll content of Scenedesmus obliquus cultivated in different artificial media. Asian Journal of Environment Biology, 1(1), 1–9. https://doi.org/10.13140/RG.2.1.3370.7926
Santo, G. E., Barros, A., Costa, M., Pereira, H., Trovão, M., Cardoso, H., ... & Silva, J. L. (2023). Scenedesmus rubescens heterotrophic production strategies for added value biomass. Marine Drugs, 21(7), 411. https://doi.org/10.3390/md21070411
Santos-Ballardo, D. U., Rossi, S., Hernández, V., Gómez, R. V., del Carmen Rendón-Unceta, M., Caro-Corrales, J., & Valdez-Ortiz, A. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448, 87–92. https://doi.org/10.1016/j.aquaculture.2015.05.044
Sarkar, S., Manna, M. S., Bhowmick, T. K., & Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58–72. https://doi.org/10.1016/j.procbio.2020.05.025
Shaikh, R., Rizvi, A., Pandit, S., Desai, N., & Patil, R. (2022). Microalgae: Classification, bioactives, medicinal properties, industrial applications, and future prospectives. En An Integration of Phycoremediation Processes in Wastewater Treatment (pp. 451–486). Elsevier. https://doi.org/10.1016/B978-0-12-823499-0.00004-3
Sun, D., Wu, S., Li, X., Ge, B., Zhou, C., Yan, X., ... & Cheng, P. (2024). The structure, functions and potential medicinal effects of chlorophylls derived from microalgae. Marine Drugs, 22(2), 65. https://doi.org/10.3390/md22020065
Tapia-López, L., Chairez, I., Guerrero-Barajas, C., & Fernandez-Linares, L. C. (2024). Effect of nitrogen source and its concentration on Scenedesmus dimorphus productivity under photoautotrophic growth conditions. Authorea Preprints. https://doi.org/10.22541/au.170664855.50804907/v1
Thakur, N., Gurav, R., Yang, Y. H., & Bhatia, S. K. (2022). Microalgal consortia and their biotechnological applications. En Algal Biorefineries and the Circular Bioeconomy (pp. 277–301). CRC Press. https://doi.org/10.1201/9781003195429-8
Udayan, A., Pandey, A. K., Sirohi, R., Sreekumar, N., Sang, B. I., Sim, S. J., ... & Pandey, A. (2023). Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochemistry Reviews, 22(4), 833–860. https://doi.org/10.1007/s11101-021-09784-y
Pandey, A., Shah, R., Yadav, P., Verma, R., & Srivastava, S. (2020). Harvesting of freshwater microalgae Scenedesmus sp. by electro–coagulation–flocculation for biofuel production: Effects on spent medium recycling and lipid extraction. Environmental Science and Pollution Research, 27, 3497–3507. https://doi.org/10.1007/s11356-019-06897-y
Verduga, M. E. (2020). Cultivo en batch de Scenedesmus spp. en aguas residuales de industrias lácteas: Crecimiento, productividad y composición bioquímica [Tesis doctoral, Universidad de Guayaquil]. http://repositorio.ug.edu.ec/handle/redug/48682
Vázquez, C. G., & Ayala, I. A. (2017). Aislamiento, identificación y curva de crecimiento de la microalga Scenedesmus obliquus con fines biotecnológicos. Jóvenes en la Ciencia, 3(1), 144–148. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/860
Vázquez-Romero, B., Perales, J. A., Vree, J. H., Böpple, H., Steinrücken, P., Barbosa, M. J., Kleinegris, D. M. M., & Ruiz, J. (2022). Techno-economic analysis of microalgae production for aquafeed in Norway. Algal Research, 64, 102679. https://doi.org/10.1016/j.algal.2022.102679
Wibisono, Y., Agung Nugroho, W., Akbar Devianto, L., Adi Sulianto, A., & Roil Bilad, M. (2019). Microalgae in food–energy–water nexus: A review on progress of forward osmosis applications. Membranes, 9(12), 166. https://doi.org/10.3390/membranes9120166
Yadav, K., Nikalje, G. C., Pramanik, D., Suprasanna, P., & Rai, M. P. (2023). Screening of the most effective media for bioprospecting three indigenous freshwater microalgae species. International Journal of Plant Biology, 14(3), 558–570. https://doi.org/10.3390/ijpb14030044
Zhang, Y., Ren, L., Chu, H., Zhou, X., Yao, T., & Zhang, Y. (2019). Optimization for Scenedesmus obliquus cultivation: The effects of temperature, light intensity and pH on growth and biochemical composition. Microbiology and Biotechnology Letters, 47(4), 614–620. https://doi.org/10.4014/mbl.1906.06005
Ziganshina, E. E., Bulynina, S. S., Yureva, K. A., & Ziganshin, A. M. (2023). Optimization of photoautotrophic growth regimens of Scenedesmaceae alga: The influence of light conditions and carbon dioxide concentrations. Applied Sciences, 13(23), 12753. https://doi.org/10.3390/app132312753
Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., & Liu, T. (2011). Effect of cultivation mode on microalgal growth and CO₂ fixation. Chemical Engineering Research and Design, 89(9), 1758–1762. https://doi.org/10.1016/j.cherd.2011.02.018

Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 QUIBIOUAS, Journal of Biological Chemical Sciences

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.