Temperature variability of submarine hydrothermal activity in Banderas Bay: Short-term analysis.
Keywords:
tide, hydrothermal vent, benthic infauna, sensors, monitoringAbstract
Submarine hydrothermal activity at Banderas Bay is a phenomenon of scientific interest due to its influence on local marine ecosystems and its potential for technological applications. This study describes two sampling campaigns conducted in 2017 and 2023, in which HOBO™ Pendant™ sensors were used to record the temperature of hydrothermal activity. The first campaign faced failures in materials and methods, while the second implemented improvements that allowed for successful recordings. It was, therefore, possible to analyze temperature variability over 53 days, from 9 September to 31 October 2023. The results obtained provide an initial perspective on the temperature dynamics of this hydrothermal activity, and it is recommended that future research include long-term monitoring of temperature and other factors.
Downloads
References
Aliani, S., Amici, L., Dando, P.R., & Meloni, R. (1998). Time series of water pressure and bottom temperature in a marine shallow water hydrothermal vent of Milos island (Aegean volcanic arc): Preliminary results. Bulletin de la Commission internationale pour l'exploration scientifique de la Mer Méditerranée, 35, 46-47.
Aliani, S., Meloni, R., & Dando, P.R. (2004). Periodicities in sediment temperature time-series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean). Journal of Marine Systems, 46, 109-119. https://doi.org/10.1016/j.jmarsys.2003.11.015
Arellano-Ramirez, Y., Kretzschmar, T.G., & Hernandez-Martinez, R. (2017). Water-Rock-Microbial Interactions in the hydrothermal spring of Puertecitos, Baja California, Mexico. Procedia Earth and Planetary Science, 17, 865-868. https://doi.org/10.1016/j.proeps.2017.01.044
Barreyre, T., Escartín, J., Sohn, R.A., Cannat, M., Ballu, V., & Crawford, W.C. (2014). Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 119, 2543-2566. https://doi.org/10.1002/2013JB010478
Canet, C., & Prol-Ledesma, R.M. (2006). Mineralizing processes at shallow submarine hydrothermal vents: Examples from Mexico. Boletín de la Sociedad Geológica Mexicana, 58 (1), 83-102. https://doi.org/10.18268/bsgm2006v58n1a3
Canet, C., Prol-Ledesma, R.M., & Melgarejo, J.C. (2000). El sistema hidrotermal de Punta Mita (México): Un ejemplo de depósito exhalativo submarino actual. Cadernos Lab. Xeolóxico de Laxe Coruña, 25, 325-327.
Cardigos, F., Colaco, A., Dando, P.R., Ávila, S.P., Sarradin, P.M., Tempera, F., Conceicao, P., Pascoal, A., & Santos, R.S. (2005). Shallow water hydrothermal vent field fluids and communities of the D. Joao de Castro Seamount (Azores). Chemical Geology, 224, 153-168. https://doi:10.1016/j.chemgeo.2005.07.019
Carlino, S., Mirabile, M., Troise, C., Sacchi, M., Zeni, L., Minardo, A., Caccavale, M., Darányi, V., & De Natale, G. (2016). Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy) for Volcano Monitoring. Remote Sensing, 8, 674. https://doi.org/10.3390/rs8080674
Chevaldonné, P., Desbruyéres, D., & Le Haitre, M. (1991). Time-series of temperature from three deep-sea hydrothermal vent sites. Deep Sea Research 38 (11), 1417– 1430. https://doi.org/10.1016/0198-0149(91)90014-7
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., & Van Andel, T.H. (1979). Submarine Thermal Springs on the Galápagos Rift. Science, 203(4385), 1073–1083.
Couto, R.P., Rodrigues, A.S., & Neto, A.I. (2015). Shallow-water hydrothermal vents in the Azores (Portugal). Journal of Integrated Coastal Zone Management, 15 (4), 495-505. https://doi.org/10.5894/rgci584
Dando, P.R., Hughes, J.A., & Thiermann, F. (1995). Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. In: Parson, L.M., Walker, C.L., Dixon, D.R. (Eds.), Hydrothermal Vents and Processes. Geological Society Special Publication, London, pp. 303– 317. https://doi.org/10.1144/GSL.SP.1995.087.01.23
Ding, K., Seyfried Jr., W.E., Tivey, M.K., & Bradley, A.M. (2001). In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge. Earth and Planetary Science Letters, 186, 417-425. https://doi.org/10.1016/S0012-821X(01)00257-6
Du, Z., Zhang, X., Xue, B., Luan, Z., & Yan, J. (2020). The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system. Solid Earth Sciences, 5, 153-168. https://doi.org/10.1016/j.sesci.2020.06.001
Fitzsimons, M.F., Dando, P.R., Hughes, J.A., Thiermann, F., Akoumianaki, I., & Pratt, S.M. (1997). Submarine hydrothermal brine seeps off Milos. Greece: observations and geochemistry. Marine chemistry, 57, 325-340. https://doi.org/10.1016/S0304-4203(97)00021-2
Fornari, D. J., Shank, T., Von Damm, K.L., Gregg, T.K.P., Lilley, M., Levai, G., Bray, A., Haymon, R.M., Perfit, M.R., & Lutz, R. (1998). Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49’-51’N: evidence for monitoring a crustal cracking event. Earth and Planetary Science Letters, 160, 419–431. https://doi.org/10.1016/S0012-821X(98)00101-0
Foucher, J.P., Henry, P., Le Pichon, X., & Kobayashi, K. (1992). Time variations of fluid expulsion velocities at the toe of the eastern Nankatai accretionary complex. Earth and Planetary Science Letters, 109, 373–382. https://doi.org/10.1016/0012-821X(92)90099-H
Fujiwara, Y., Tsukahara, J., Hashimoto, J., & Fujikura, K. (1998). In situ spawning of a deep-sea vesicomyid clam: evidence for an environmental clue. Deep Sea Research I (45), 1881– 1889.
Goto, S., Kinoshita, M., Matsubayashi, O., & Von Herzen, R.P. (2002). Geothermal constraints on the hydrological regime of the TAG active hydrothermal mound, inferred from long-term monitoring. Earth and Planetary Science Letters, 203, 149-163. https://doi.org/10.1016/S0012-821X(02)00876-2
Hessler, R.R., Smithey, W.M., Boudrias, M.A., Keller, C.H., Luts, R.A., & Childress, J.J. (1988). Temporal changes in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift: eastern tropical Pacific). Deep-Sea Research, 35, 1681-1709. https://doi.org/10.1016/0198-0149(88)90044-1
Kelley, D.S., Delaney, J.R., & Juniper, S.K. (2014). Establishing a new era of submarine volcanic observatories: Cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge. Marine Geology, 352, 426-450. https://doi.org/10.1016/j.margeo.2014.03.010
Kinoshita, M., Matsubayashi, O., & Von Herzen, R.P. (1996). Subbottom temperature anomalies detected by long-term temperature monitoring at the TAG hydrothermal mound. Geophysical Research Letters, 23, 3467– 3470. https://doi.org/10.1029/96GL02150
Langmuir, C., Humphris, S., Fornari, D., Van Dover, C., Von Damm, K., Tivey, M.K., Colodner, D., Charlou, J.L., Desonie, D., Wilson, C., Fouquet, Y., Klinkhammer, G., & Bougault, H. (1997). Hydrothermal vents near a mantle hot spot: The Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 148, 69-91. https://doi.org/10.1016/S0012-821X(97)00027-7
Larson, B.I., Lilley, M.D., & Olson, E.J. (2009). Parameters of subsurface brines and hydrothermal processes 12–15 months after the 1999 magmatic event at the Main Endeavor Field as inferred from in situ time series measurements of chloride and temperature. Journal of Geophysical Research, 114, B01207. https://doi.org/10.1029/2008JB005627
Lee, R.W., Robert, K., Matabos, M., Bates, A.E., & Juniper, S.K. (2015). Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field. Deep-Sea Research I, 106, 154-166. https://doi.org/10.1016/j.dsr.2015.10.004
Li, L.F., Zhang, X., Luan, Z.D., Du, Z.F., Xi, S.C., Wang, B., Lian, C., & Yan, J. (2018). A new approach to measuring the temperature of fluids reaching 300°C and 2 mol/kg NaCl based on the Raman shift of water. Applied Spectroscopy, 72 (11), 1621-1631. https://doi.org/10.1177/0003702818776662
Liao, G., Zhou, B., Liang, C., Zhou, H., Ding, T., Wang, Y., & Dong, C. (2016). Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge. Journal of Geophysical Research: Oceans, 121, 836-860. https://doi.org/10.1002/2015JC011053
López-Sánchez, A., Báncora-Alsina, C., Prol-Ledesma, R.M., & Hiriart, G. (2006). A New Geothermal Resource in Los Cabos, Baja California Sur, Mexico. In: Proceedings 28th: New Zealand, Geothermal Workshop, S3-6.
Marques-Mendes, A.R. (2008). Influência Das fonts Hidrotermais Marinhas De Baixa Profundidade Na Composiçao Das Comunidades De Meiofauna. Tesis de Licenciatura en Biología Marina, Universidade Dos Açores, Ponta Delgada, Azores, Portugal, pp. 38.
Melwani, A.R., & Kim, S.L. (2008). Benthic infaunal distributions in shallow hydrothermal vent sediments. Acta Geologica, 33, 162-175. https://doi.org/10.1016/j.actao.2007.10.008
Mittelstaedt, E., Escartín, J., Gracias, N., Olive, J.A., Barreyre, T., Davaille, A., Cannat, M., & Garcia, R. (2012). Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field. Geochemistry, Geophysics, Geosystems, 13 (4), 1-18. https://doi.org/10.1029/2011GC003991
Momma, H., Iwase, R., Mitsuzawa, K., Kaiho, Y., & Fujiwara, Y. (1998). Preliminary results of a three-year continuous observation by a deep seafloor observatory in Sagami Bay, central Japan. Physics of the Earth and Planetary Interiors, 108, 263– 274. https://doi.org/10.1016/S0031-9201(98)00107-1
Núñez-Cornú, F.J., Prol-Ledesma, R.M., Cupul-Magaña, A., & Suárez-Plascencia, C. (2000). Near shore submarine hydrothermal activity in Bahia Banderas western Mexico. Geofísica Internacional, 39, 171-178.
Prol-Ledesma, R. M., Canet, C., Torres-Vera, M.A., Forrest, M.J., & Armienta, M.A. (2004). Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 137, 311-328. https://doi.org/10.1016/j.jvolgeores.2004.06.003
Prol-Ledesma, R.M., & Canet, C. (2014). Evaluación y Explotación de los Recursos Geotérmicos del Océano. En Low-Pfeng, A. y Peters-Recagno, E.M. (Eds.), La Frontera Final: El Océano Profundo, pp. 11-30.
Prol-Ledesma, R.M., Canet, C., Melgarejo, J.C., Tolson, G., Rubio-Ramos, M.A., Cruz-Ocampo, J.C., Ortega-Osorio, A., Torres-Vera, M.A., & Reyes, A. (2002). Cinnabar deposition in submarine coastal hydrothermal vents, Pacific margin of central Mexico. Economic Geology, 97, 1331-1340. https://doi.org/10.2113/gsecongeo.97.6.1331
Rinke, C., & Lee, R.W. (2009). Macro camera temperature logger array for deep-sea hydrothermal vent and benthic studies. Limnology and Oceanography: Methods, 7, 527-534. https://doi.org/10.4319/lom.2009.7.527
Rodríguez-Uribe, M., Jarquín-González, J., Salazar-Silva, P., Chávez-Dagostino, R., & Merino, N.B. (2024). Cumaceans (Crustacea, Peracarida) associated with shallow-water hydrothermal vents at Banderas Bay, Mexico. Biodiversity Data Journal, 12, e139801. https://doi.org/10.3897/BDJ.12.e139801
Rodríguez-Uribe, M.C., Núñez-Cornú, F.J., Prol-Ledesma, R.M., & Salazar-Silva, P. (2023). Benthic infauna associated with a shallow-water hydrotermal system of Punta Mita (Mexico). Journal of the Marine Biological Association of the United Kingdom, 103, e26: 1-12. https://doi.org/10.1017/S0025315423000164
Scheirer, D.S., Shank, T.M., & Fornari, D.J. (2006). Temperature variations at diffuse and focused flow hydrothermal vent sites along the northern East Pacific Rise. Geochemistry, Geophysics, Geosystems, 7(3). https://doi.org/10.1029/2005GC001094
Schultz, A., Dickson, P., & Elderfield, H. (1996). Temporal variations in diffuse hydrothermal flow at TAG. Geophysical Research Letters, 23, 3471– 3474. https://doi.org/10.1029/96GL02081
Sohn, R.A. (2007). Stochastic analysis of exit fluid temperature records from the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°N): 1. Modes of variability and implications for subsurface flow. Journal of Geophysical Research, 112, B07101. https://doi.org/10.1029/2006JB004435
Stüben, D., Sedwick, P., & Colantoni, P. (1996). Geochemistry of submarine warm springs in the limestone cavern of Grotta Azzurra, Capo Palinuro, Italy: evidence of mixing zone dolomization. Chemical Geology, 131, 113–125. https://doi.org/10.1016/0009-2541(96)00029-0
Tarasov, V.G., Gebruk, A.V., Mironov, A.N., & Moskalev, L.I. (2005). Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chemical Geology, 224(1-3), 5-39. https://doi.org/10.1016/j.chemgeo.2005.07.021
Tivey, M.K., Bradley, A.M., Joyce, T.M., & Kadko, D. (2002). Insights into tide-related variability at seafloor hydrothermal vents from timeseries temperature measurements. Earth and Planetary Science Letters, 202, 693–707. https://doi.org/10.1016/S0012-821X(02)00801-4
Tsirnplis, M.N., & Vlahakis, G.N. (1994). Meteorological forcing and sea level variability in the Aegean Sea. Journal of Geophysical Research, 99 (C5), 9879-9890. https://doi.org/10.1029/94JC00479
Vidal, V.M.V., Vidal, F.V., & Isaacs, J.D. (1978). Coastal Submarine Hydrothermal Activity off Northern Baja California. Journal of Geophysical Research, 83, 1757-1774. https://doi.org/10.1029/JB083iB04p01757
Wenzhöfer, F., Holby, O., Glud, R.N., Nielsen, H.K., & Gundersen, J.K. (2000). In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Marine Chemistry, 69, 43-54. https://doi.org/10.1016/S0304-4203(99)00091-2

Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Journal Ciencias del Mar UAS

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.