Quién se come a quién: Redes alimentarias en ecosistemas marinos y salobres

Autores/as

  • Dr. Jesus M. Quintero-Alvarez Instituto de Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México. Unidad Académica. Mazatlán, Sinaloa. Autor/a
  • Dr. Amezcua-Martinez Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, México. Autor/a https://orcid.org/0000-0001-6298-7531

Palabras clave:

Red alimentaria, carbono, nitrógeno, isótopos, metales pesados

Resumen

El objetivo de esta revisión fue presentar un breve panorama de cómo se construyen las redes tróficas en la naturaleza y comprender el impacto de los metales pesados en ellas. Se destacaron los isótopos estables más comunes utilizados para estudiar la trofodinámica en ecosistemas marinos y salobres naturales. Se identificó al productor primario, al consumidor primario, al consumidor secundario y al consumidor terciario como etapas de la red trófica y sus respectivos isótopos estables de carbono y nitrógeno. Se revisaron algunas evidencias de envenenamiento por metales que impactan la salud pública y humana, particularmente en la presencia de metilmercurio en especies de cadmio y plomo en las redes tróficas. Esta revisión consideró al menos 60 artículos científicos de todo el mundo y algunos otros escritos en México para producir este manuscrito. A pesar del avance en ecología trófica, aún existe una brecha en el conocimiento sobre la transferencia de metales pesados en las redes tróficas. Ambas técnicas, el análisis de isótopos estables y el análisis del contenido estomacal, desempeñan un papel clave para comprender la dinámica trófica en las redes tróficas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adams, T. S., & Sterner, R. W. (2000). The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and oceanography, 45(3), 601-607. https://doi.org/10.4319/lo.2000.45.3.0601

Aoshima K. Itai-itai disease: renal tubular osteomalacia induced by environmental exposure to cadmium? historical review and perspectives. J Soil Sci Plant Nutr 2016; 62:319–26.

Altındağ, A., & Yiğit, S. (2005). Assessment of heavy metal concentrations in the food web of lake Beyşehir, Turkey. Chemosphere, 60(4), 552-556. https://doi.org/10.1016/j.chemosphere.2005.01.009

Aoshima, K. (2016). Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—historical review and perspectives. Soil Science and Plant Nutrition, 62(4), 319-326. https://doi.org/10.1080/00380768.2016.1159116

Aoshima K. [Itai-itai disease: cadmium-induced renal tubular osteomalacia]. Nihon Eiseigaku Zasshi 2012;67:455–63.

Bassham, J.A., Benson, A.A., & Calvin, M (1950). The path of carbon in photosynthesis. VIII. The role of malic acid. — Journal of Biological Chemistry 185: 781–787. https://doi.org/10.11111/j.1365-2435.2008.01524.x

Bhagat, J., Zang, L., Nishimura, N. & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of the Total Environment, 728, 138707. https://doi.org/10.1016/j.scitotenv.2020.138707

Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian journal of fisheries and aquatic sciences, 49(5), 1010-1017.

https://doi.org/10.1139/f92-113

Cabana, G., & Rasmussen, J. B. (1996). Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of sciences, 93(20), 10844-10847. https://doi.org/10.1073/pnas.93.20.10844

Campbell, T. I., Tweedley, J. R., Johnston, D. J., & Loneragan, N. R. (2021). Crab diets differ between adjacent estuaries and habitats within a sheltered marine embayment. Frontiers in Marine Science, 8, 564695. https://doi.org/10.3389/fmars.2021.564695

Chen, J., Hintelmann, H., Zheng, W., Feng X., Cai, H., Wang, Z., Yuan, S., Wang, Z. (2016).

Isotopic evidence for distinct sources of mercury in lake waters and sediments. Chemical Geology, Volume 426, Pages 33-44, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2016.01.030

Cui, B., Zhang, Q., Zhang, K., Liu, X., & Zhang, H. (2011). Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution, 159(5), 1297-1306. https://doi.org/10.1016/j.jhydrol.2014.09.038

DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et cosmochimica acta, 45(3), 341-351. https://doi.org/10.1016/0016-7037(81)90244-1

Doi, H. (2009). Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology, 51, 57-64. https://doi.org/10.1007/s10144-008-0127-z

France, R. L. (1995). Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography, 40(7), 1310-1313. https://doi.org/10.4319/lo.1995.40.7.1310

France, R. L., & Peters, R. H. (1997). Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences, 54(6), 1255-1258. https://doi.org/10.1139/f97-044

Friberg L, Piscator M, Nordberg G. The Itai-itai disease. In: Friberg L, Piscator M, Nordberg G, eds. Cadmium in the environment. Ohio: CRC press, 1971:111–4

Foster, I. D. L., & Charlesworth, S. M. (1996). Heavy metals in the hydrological cycle: trends and explanation. Hydrological processes, 10(2), 227-261.https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<227::AID-HYP357>3.0.CO;2-X

Fry, B. (2006). Stable isotope ecology (Vol. 521, p. 318). New York: Springer.

González-Bergonzoni, I., Meerhoff, M., & Davidson, T.A. (2012). Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystem, volume 15, pages 492–503. https://doi.org/10.1007/s10021-012-9524-4

Haimi, J. (2008). Decomposer animals and bioremediation of soils. Environmental Pollution. Volume 107, Issue 2. Pages 233-238. ISSN 0269-7491. https://doi.org/10.1016/S0269-7491(99)00142-6

Harada, M. (1995). Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical reviews in toxicology, 25(1), 1-24. https://doi.org/10.3109/10408449509089885

Hairston Jr, N. G., & Hairston Sr, N. G. (1993). Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist, 142(3), 379-411.

Hobson, K. A., & Welch, H. E. (1992). Determination of trophic relationships within a high Arctic marine food web using δ 13 C and δ 15 N analysis. Marine Ecology Progress Series, 84(1), 9–18. http://www.jstor.org/stable/24829721

Hu, C., Shui, B., Yang, X., Wang, L., Dong, J., & Zhang, X. (2021). Trophic transfer of heavy metals through aquatic food web in a seagrass ecosystem of Swan Lagoon, China. Science of the total environment, 762, 143139. https://doi.org/10.1016/j.chemosphere.2023.138211

Jadaa, W., & Mohammed, H. (2023). Heavy metals–definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods–an overview study. Journal of Ecological Engineering, 24(6), 249-271. https://doi.org/10.12911/22998993/162955. ISSN 2299–8993, License CC-BY 4.0

Jara-Marini, M.E., Soto-Jiménez M. F. &. Páez-Osuna, F. (2009).Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Golf of California. Chemosphere, Volume 77, Issue 10, Pages 1366-1373, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2009.09.025

Jara‐Marini, M. E., Soto‐Jiménez, M. F., & Páez‐Osuna, F. (2012). Mercury transfer in a subtropical coastal lagoon food web (SE Gulf of California) under two contrasting climatic conditions. Environmental Toxicology, 27(9), 526-536. https://doi.org/10.1002/tox.20670

Jara-Marini, M. E., Molina-García, A., Martínez-Durazo, Á., & Páez-Osuna, F. (2020). Trace metal trophic transference and biomagnification in a semiarid coastal lagoon impacted by agriculture and shrimp aquaculture. Environmental Science and Pollution Research, 27, 5323-5336. https://doi.org/10.1007/s11356-019-06788-2

Jernelöv, A. (1976). Environmental contamination by mercury in Iraq. Bulletin of the World Health Organization, 53(Suppl), 113.

Kendall, D.C., Raubenheimer D., & Choat J.H. (2009). Nutritional ecology of marine herviborous fishes: ten years on. British Ecological Society: Functional Ecology. Volume 23, Issue 1, pages 79-92. https://doi.org/10.1111/j.1365-2435.2008.01524.x

Kitagawa M. A review and database construction of autopsy findings of patients with Itai-itai disease for future medical studies. Kankyo Hoken Report 2002;68:21–37.

Kling, G. W., Fry, B., & O'Brien, W. J. (1992). Stable isotopes and planktonic trophic structure in arctic lakes. Ecology, 73(2), 561-566. https://doi.org/10.2307/1940762

Kling, G. W., Fry, B., & O'Brien, W. J. (1992). Stable isotopes and planktonic trophic structure in arctic lakes. Ecology, 73(2), 561-566. https://doi.org/10.2307/1940762

Levy, J. L., Angel, B. M., Stauber, J. L., Poon, W. L., Simpson, S. L., Cheng, S. H., & Jolley, D. F. (2008). Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquatic toxicology, 89(2), 82-93. https://doi.org/10.1016/j.aquatox.2008.06.003

Liu, J., Cao, L., & Dou, S. (2019). Trophic transfer, biomagnification and risk assessments of four common heavy metals in the food web of Laizhou Bay, the Bohai Sea. Science of the total environment, 670, 508-522. https://doi.org/10.1016/j.scitotenv.2019.03.140

Li, X., Wang, Q., Liu, F., Lu, Y., & Zhou, X. (2024). Quantifying the bioaccumulation and trophic transfer processes of heavy metals based on the food web: A case study from freshwater wetland in northeast China. Science of The Total Environment, 928, 172290. https://doi.org/10.1016/j.scitotenv.2024.172290

Liu, Y., Hua, Z., Lu, Y., Gu, L., Luan, C., Li, X., ... & Chu, K. (2022). Quinolone distribution, trophodynamics, and human exposure risk in a transit-station lake for water diversion in east China. Environmental Pollution, 311, 119985. https://doi.org/10.1016/j.scitotenv.2022.156818

Mendoza-Carranza, M., Sepúlveda-Lozada, A., Dias-Ferreira, C., Geissen, V., (2016). Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, Volume 210, 2016, Pages 155-165, ISSN 0269-7491, https://doi.org/10.1016/j.envpol.2015.12.014.

Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et cosmochimica acta, 48(5), 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7

Muro-Torres, V. M., Soto-Jiménez, M. F., Green, L., Quintero, J., & Amezcua, F. (2019). Food web structure of a subtropical coastal lagoon. Aquatic Ecology, 53, 407-430. https://doi.org/10.1007/s10452-019-09698-0

Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ open, 7(7), e015694.

Nogawa K, Kido T. Itai-itai disease and health effects of cadmium. Chang LW, ed. Toxicology of metals. New York: CRCpress, 1996:353–69.

O'reilly, C. M., Hecky, R. E., Cohen, A. S., & Plisnier, P. D. (2002). Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnology and oceanography, 47(1), 306-309.

Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual review of ecology and systematics, 293-320. https://www.jstor.org/stable/2097134

Persson, A., Barkman, A., Hansson, L. A. (1999). Simulating the effects of biomanipulation on the food web of Lake Ringsjön. In: Hansson, LA., Bergman, E. (eds) Nutrient Reduction and Biomanipulation as Tools to Improve Water Quality: The Lake Ringsjön Story. Developments in Hydrobiology, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2462-3_14

Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C., & Ward, E. J. (2014). Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92(10), 823-835. https://doi.org/10.1139/cjz-2014-0127

Pimm, S., Lawton, J. & Cohen, J. (1991). Food web patterns and their consequences. Nature 350, 669–674 https://doi.org/10.1038/350669a0

Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147(5), 813-846.

Polis, G.A., Anderson., W.B., & Holt, R.D. (1997). Toward an integration of landscape and food web ecology. The dynamics of spatially subsidized food webs. Annual Review of Ecology, Evolution and Systematic. Volume 28 289-316. https://doi.org/10.1146/annurev.ecosys.28.1.289

Post, D. M., Pace, M. L., & Hairston, Jr. (2000). Ecosystem size determines food-chain length in lakes. Nature, 405(6790), 1047-1049. https://doi.org/10.1038/35016565

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83 (3), pages: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

Reyes-Márquez, A., Aguíñiga-García, S., Morales-García, S. S., Sedeño-Díaz, J. E., & López-López, E. (2022). Temporal distribution patterns of metals in water, sediment, and components of the trophic structure in a tropical coastal lagoon of the Gulf of Mexico. Environmental Science and Pollution Research, 29(41), 61643-61661. https://doi.org/10.1007/s11356-021-17815-6

Rounick, J. S., & Winterbourn, M. J. (1986). Stable carbon isotopes and carbon flow in ecosystems. BioScience, 36(3), 171-177. https://doi.org/10.2307/1310304

Sint, D., & Traugott, M. (2016). Food Web Designer: a flexible tool to visualize interaction networks. Journal of Pest Science, 89, 1-5. https://doi.org/10.1007/s10340-015-0686-7

Soto-Jiménez, M.F., Arellano-Fiore, C., Rocha-Velarde, R., Jara-Marini, M. E., Ruelas-Inzunza, J. & Paez-Osuna, F. (2011). Trophic Transfer of Lead Through a Model Marine Four-Level Food Chain: Tetraselmis suecica, Artemia franciscana, Litopenaeus vannamei, and Haemulon scudderi . Archive of Environmental Contamination and Toxicology. Volume 61, pages 280–291 https://doi.org/10.1007/s00244-010-9620-4

Soto-Jiménez, M. F., Valladolid Garnica, D. E., Torres-Rojas, Y. E., Jara Marini, M. E., & Muro-Torres, V. M. (2023). Trophodynamics of Arsenic, Mercury, and Selenium in the Food Webs of the Southeastern Gulf of California. Mercury, and Selenium in the Food Webs of the Southeastern Gulf of California. http://dx.doi.org/10.2139/ssrn.4608087

Tulonen, T., Pihlström, M., Arvola, L., & Rask, M. (2006). Concentrations of heavy metals in food web components of small, boreal lakes. Boreal Environment Research, 11(3), 185. ISSN 1239-6095.

Vander Zanden, M. J., Casselman, J. M., & Rasmussen, J. B. (1999). Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401(6752), 464-467.

https://doi.org/10.1038/46762

Valladolid-Garnica, D. E., Jara-Marini, M. E., Torres-Rojas, Y. E., & Soto-Jiménez, M. F. (2023). Distribution, bioaccumulation, and trace element transfer among trophic levels in the southeastern Gulf of California. Marine Pollution Bulletin, 194, 115290. https://doi.org/10.1016/j.marpolbul.2023.115290

Vidal, M. C., & Murphy, S. M. (2018). Bottom‐up vs. top‐down effects on terrestrial insect herbivores: A meta‐analysis. Ecology letters, 21(1), 138-150. https://doi.org/10.1111/ele.12874

Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295-309.

Yokoyama, H. (2018). Mercury pollution in Minamata. Springer Nature. ISSN 2191-5555.

https://doi.org/10.1007/978-981-10-7392-2

Yusuf, M., Pamungkas, A., & Hudatwi, M. A. (2021). Distribution of Turbidity Values, Total Suspended Solids and Heavy Metals Pb, Cu in Tanah Merah Beach Waters and Semujur Island Waters, Bangka Tengah Regency. In IOP Conference Series: Earth and Environmental Science (Vol. 750, No. 1, p. 012038). IOP Publishing.https://doi.org/10.1088/1755-1315/750/1/012038

Zanden, M. J. V., & Rasmussen, J. B. (2001). Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and oceanography, 46(8), 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061

Zheng, R., Liu, Y., & Zhang, Z. (2023). Trophic transfer of heavy metals through aquatic food web in the largest mangrove reserve of China. Science of the Total Environment, 899, 165655. https://doi.org/10.1016/j.scitotenv.2023.165655

Who eats whom:  Food webs in marine  and brackish ecosystems

Descargas

Publicado

2025-09-30

Número

Sección

Artículo científico

Categorías

Artículos similares

1-10 de 23

También puede Iniciar una búsqueda de similitud avanzada para este artículo.