Responsible design of an extractive distillation process for bioethanol: economic, environmental, and safety assessment with energy integration
Keywords:
Bioethanol, Extractive Distillation, Energy Integration, Economic Evaluation, Environmental Impact, Inherent SafetyAbstract
Bioethanol produced from lignocellulosic residues is a second-generation biofuel with significant potential, whose purification process faces technical challenges due to azeotrope formation and high energy consumption. This study proposes a design for the purification of bioethanol through extractive distillation, integrating economic, environmental, and inherent safety as a practice of anticipatory responsibility, in alignment with the principles of anticipation and reflexivity, the Responsible Research and Innovation (RRI) framework. Three process configurations were simulated using Aspen Plus® V14, linked to techno-economic and sustainability assessments developed in MATLAB®. The influence of bioethanol purity and recovery, as well as the implementation of energy integration strategies through heat exchangers, was analyzed. Economic evaluation was carried out using the Guthrie method; inherent safety was assessed through the Distillation Column Inherent Safety Index (DCISI) and the Fire and Explosion Damage Index (FEDI); and environmental impact was evaluated using the IMPACT World+ methodology. Finally, the Analytic Hierarchy Process (AHP) was applied to integrate the three criteria into a composite sustainability index. The results identified that the configuration with 91.0% purity and 99.96% recovery in the concentrating column, with two heat exchangers, showed the best overall performance. This option reduces energy consumption, minimizes environmental impact, and enhances process safety. The study demonstrates that the systematic integration of technical, economic, and environmental indicators is key to the design of more sustainable, safer, and ethically grounded chemical processes.
Downloads
References
Argoti, A., Orjuela, A., & Narváez, P. C., (2019). Challenges and opportunities in assessing sustainability during chemical process design. Current Opinion in Chemical Engineering, 26 (2019), pp. 96-103. https://doi.org/10.1016/j.coche.2019.09.003
Bin Othman, M. R., (2011). Sustainability assessment and decision making in chemical process design [Tesis de doctorado]. Universidad Técnica de Berlín, Berlín, Alemania.
Bulle, C., Margni, M., Patouillard, L., Boulay, A.-M., Bourgault, G., De Bruille, V. & Jolliet, O., (2019). IMPACT World+: a globally regionalized life cycle impact assessment method. The International Journal of Cycle Assessment, (24), 1653-1674. doi:10.1007/s11367-01901583-0
FAO, O. l., (2016). El estado mundial de la agricultura y la alimentación: cambio climático, agricultura y seguridad alimentaria. Roma: Food and Agriculture Organization.
Gianni, R., Pearson, J., & Reber, B., (2019). RRI: A critical-constructive approach. Responsible Research and Innovation: From Concepts to Practices. (1a ed., pp. 1-9). Abigdon, Inglaterra: Routledge Taylor & Francis Group.
Gil, I. D., García, L. C., & Rodríguez, G., (2013). Simulation of ethanol extractive distillation with mixed glycols as separating agent. Brazilian Journal of Chemical Engineering, 31(01), pp. 259-270. doi:10.1590/S0104-66322014000100024
Hbaki, H., Tabata, O., Kawasaki, J., & Egashira, R., (2010). Extraction equilibrium of ethanol fot bioethanol production-solvent slection and liquid-liquid equilibrium measurement-. Journal of the Japan Petroleum Institute, 53(3), 135-143. doi:10.1627/jpi.53.135
Jolliet, O., Saadé-Sbeih, M., Shaked S., Jolliet, A. & Crettaz, P., (2016). Life Cycle Impact Assessment. En: O. Jolliet, S. Shaked, M. Saadé-Sbeih, C. Bulle, A. Jolliet & P. Crettaz, (Ed). Enviromental Life Cycle Assessment. (8va edición). pp 105-144. Boca Ráton, USA: CRC Press.
Khan, F. I. & Amyotte, P. R., (2005). I2SI: A comprehensive quantitative tool for inherent safety and cost evaluation. Journal of Loss Prevention in the Process Industries, (18), pp. 310-326. https://doi.org/10.1016/j.jlp.2005.06.022
Kiss, A. A. & Ignat, R. M., (2013). Optimal Economic Design of an Extractive Distillation Process for Bioethanol Dehydration. Energy Technology. (1), pp 166-170. doi: 10.1002/ente.201200053
Madita Amoneit, Dagmara Weckowska, Stephanie Sphar, Olaf Wagner, Mohsen Adeli, Inka Mai & Rainer Haag., (2024). Green chemistry and responsible research and innovation: Moving beyond the 12 principles. Journal of Cleaner Production. 484 (2024) 144011. https://doi.org/10.1016/j.jclepro.2024.144011
Nuñez Garcia, M. J., & Garcia Triñanes, P. (noviembre 2006). Biocombustibles: Bioetanol y Biodiesel. Trabajo presentado en actas del XIX Congreso ENCIGA; Asocición dos Ensinates de Ciencias de Galicia. Santiago de Compostela, A Coruña, España.
Ortiz-Espinoza, A. P., (2020). Inclusión de seguridad inherente en el diseño y evaluación de procesos químicos [Tesis de doctorado]. Instituto Tecnológico de Celaya. Celaya, Guanajuato.
Ortiz-Espinoza, A. P., Jiménez-Gutiérrez, A., El-Halwagi, M. M., Kazantzis, N. K. & Kazantzi, V., (2021). Comparison of safety indexes for chemical processes under uncertainty. Process Safety and Enviromental Protection, (148), pp 225-236. Doi: https://doi.org/10.1016/j.psep.2020.09.069
Peréz Fernández, A., Rivas Martínez, M. L., Caamal Cauich, I., & Martínez Luis, D., (2017). Production of bioethanol and its impact on the price of agricultural products in Mexico. Ecosistemas y Recursos Agropecuarios, 4(12), pp. 597-602. doi:10.19136/era.a4n12.977
Scilipoti, J. A., (2014). Diseño molecular y otras estrategias para la selección de solventes y co-solventes en prcesos de separación [Tesis de pregrado]. Universidad Nacional del Sur, Bahia Blanca, Argentina.
Seader, J. D., Henley, E. J., & Roper, D. K., (2016b). Enhanced Distillation and Supercritical Extraction. En L. Ratts, M. O'Sullivan, editores. Separation process principles with aplications using process simulators. (4ta Ed., pp. 320-369). Hoboken, Estados Unidos de América: Wiley.
Seider, W. D., Seader, J. D., Lewin, D. R., & Widago, S., (2009a). Cost accounting and capital cost estimation. Welter, J., Dumas S. editores. Product and process design principples: synthesis, analysis and evaluation. (3ra Ed., pp. 602-641). Hoboken, Estados Unidos de América: Wiley.
Shariff, A. M., Athar, M., Buang, A., Khan, M. I., & Hermansyah, H., (2018). Distillation column inherent safety index at preliminary. IOP Conf. Series: Materials Science and Engineering, 458(012047), pp. 12-47. doi:10.1088/1757-899X/458/1/012047
Valdeón, D. H., (2018). Tecnologías de deshidratación de bioetanol. [Tesis de maestría]. Universidad Tecnológica Nacional, San Miguel de Túcuman, Argentina.
Velasco Cristancho, A. P., (2020). Una revisión general de los procesos para la producción de bioetanol de segunda generación a partir de biomasa lignocelulósica. Tesis de pregrado. Universidad Santo Tómas, Villavicencio, Colombia.
 
											Downloads
Published
Data Availability Statement
The data used in this study correspond to simulations, evaluations, and analytical results developed within the framework of an undergraduate thesis available in the institutional repository of the Universidad Autónoma de Sinaloa. No additional datasets have been generated for public dissemination. Relevant results and parameters are described within the body of the present article. Any additional information may be reasonably requested from the corresponding author for non-commercial academic purposes.
Issue
Section
Categories
License
Copyright (c) 2025 QUIBIOUAS, Journal of Biological Chemical Sciences

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
 
						
